mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-22 08:09:28 +08:00
[Iluvatar GPU] Optimze attention and moe performance (#3234)
This commit is contained in:
@@ -16,22 +16,22 @@
|
||||
|
||||
import gc
|
||||
import os
|
||||
from typing import List, Optional
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.engine.request import Request
|
||||
from fastdeploy.inter_communicator import IPCSignal
|
||||
from fastdeploy.utils import get_logger, set_random_seed
|
||||
from fastdeploy.worker.gpu_worker import GpuWorker
|
||||
from fastdeploy.worker.iluvatar_model_runner import IluvatarModelRunner
|
||||
from fastdeploy.worker.output import ModelRunnerOutput
|
||||
from fastdeploy.worker.worker_base import WorkerBase
|
||||
from fastdeploy.worker.worker_process import PaddleDisWorkerProc
|
||||
|
||||
logger = get_logger("iluvatar_worker", "iluvatar_worker.log")
|
||||
|
||||
|
||||
class IluvatarWorker(WorkerBase):
|
||||
class IluvatarWorker(GpuWorker):
|
||||
""" """
|
||||
|
||||
def __init__(
|
||||
@@ -40,15 +40,16 @@ class IluvatarWorker(WorkerBase):
|
||||
local_rank: int,
|
||||
rank: int,
|
||||
):
|
||||
super().__init__(
|
||||
super(IluvatarWorker, self).__init__(
|
||||
fd_config=fd_config,
|
||||
local_rank=local_rank,
|
||||
rank=rank,
|
||||
)
|
||||
pass
|
||||
|
||||
def init_device(self):
|
||||
"""Initialize device and Construct model runner"""
|
||||
"""
|
||||
Initialize device and construct model runner
|
||||
"""
|
||||
if paddle.is_compiled_with_custom_device("iluvatar_gpu"):
|
||||
# Set evironment variable
|
||||
self.device = f"iluvatar_gpu:{self.local_rank}"
|
||||
@@ -70,12 +71,6 @@ class IluvatarWorker(WorkerBase):
|
||||
local_rank=self.local_rank,
|
||||
)
|
||||
|
||||
def exist_prefill(self):
|
||||
"""
|
||||
check whether prefill stage exist
|
||||
"""
|
||||
return self.model_runner.exist_prefill()
|
||||
|
||||
def determine_available_memory(self) -> int:
|
||||
"""
|
||||
Profiles the peak memory usage of the model to determine how much
|
||||
@@ -92,51 +87,86 @@ class IluvatarWorker(WorkerBase):
|
||||
# 1. Record memory state before profile run
|
||||
return int(float(os.getenv("FD_ILUVATAR_KVCACHE_MEM", "3")) * 1024**3)
|
||||
|
||||
def load_model(self) -> None:
|
||||
""" """
|
||||
self.model_runner.load_model()
|
||||
|
||||
def get_model(self) -> nn.Layer:
|
||||
""" """
|
||||
return self.model_runner.get_model()
|
||||
class IluvatarPaddleDisWorkerProc(PaddleDisWorkerProc):
|
||||
"""
|
||||
Paddle Distributed wrapper for fastdeploy.worker.Worker,
|
||||
for handling single-node multi-GPU tensor parallel.
|
||||
The wrapper internally executes an event loop that continuously executes requests
|
||||
in the task queue. Control flow is transmitted by IPC.
|
||||
"""
|
||||
|
||||
def initialize_cache(self, num_gpu_blocks: int) -> None:
|
||||
""" """
|
||||
self.model_runner.update_share_input_block_num(num_gpu_blocks=num_gpu_blocks)
|
||||
def __init__(self, fd_config: FDConfig, ranks: int = 1, local_rank: int = 0):
|
||||
super(IluvatarPaddleDisWorkerProc, self).__init__(
|
||||
fd_config=fd_config,
|
||||
ranks=ranks,
|
||||
local_rank=local_rank,
|
||||
)
|
||||
|
||||
def execute_model(
|
||||
self,
|
||||
model_forward_batch: Optional[List[Request]] = None,
|
||||
num_running_requests: int = None,
|
||||
) -> Optional[ModelRunnerOutput]:
|
||||
""" """
|
||||
output = self.model_runner.execute_model(model_forward_batch, num_running_requests)
|
||||
return output
|
||||
def initialize_kv_cache(self) -> None:
|
||||
"""Profiles the peak memory usage of the model to determine how many
|
||||
KV blocks may be allocated without OOMs.
|
||||
|
||||
def preprocess_new_task(self, req_dicts: List[Request], num_running_requests: int) -> None:
|
||||
"""Process new requests and then start the decode loop
|
||||
TODO(gongshaotian):The scheduler should schedule the handling of prefill,
|
||||
and workers and modelrunners should not perceive it.
|
||||
The engine will first conduct a profiling of the existing memory usage.
|
||||
Then, it calculate the maximum possible number of GPU and CPU blocks
|
||||
that can be allocated with the remaining free memory.
|
||||
|
||||
.. tip::
|
||||
You may limit the usage of GPU memory
|
||||
by adjusting the `gpu_memory_utilization` parameter.
|
||||
"""
|
||||
self.model_runner.insert_prefill_inputs(req_dicts=req_dicts, num_running_requests=num_running_requests)
|
||||
if self.fd_config.parallel_config.do_profile:
|
||||
# 1. Get available memory(bytes)
|
||||
available_kv_cache_memory = self.worker.determine_available_memory()
|
||||
logger.info(f"------- available_kv_cache_memory:{available_kv_cache_memory / 1024**3} GB --------")
|
||||
|
||||
def graph_optimize_and_warm_up_model(self) -> None:
|
||||
"""
|
||||
Perform the warm-up and the graph optimization
|
||||
"""
|
||||
# 1. Warm up model
|
||||
# NOTE(gongshaotian): may be not need warm_up at this place
|
||||
if self.model_runner.graph_opt_level >= 1:
|
||||
self.model_runner.sot_warmup()
|
||||
# 2. Calculate the appropriate number of blocks
|
||||
model_block_memory_used = self.worker.cal_theortical_kvcache()
|
||||
num_blocks_local = int(available_kv_cache_memory // model_block_memory_used)
|
||||
# NOTE(liuzichang): Too many block will lead to illegal memory access
|
||||
# We will develop dynamic limits in future.
|
||||
if num_blocks_local > 40000:
|
||||
logger.info(f"------- Reset num_blocks_local {num_blocks_local} to 40000")
|
||||
num_blocks_local = min(40000, num_blocks_local)
|
||||
logger.info(f"------- model_block_memory_used:{model_block_memory_used} --------")
|
||||
logger.info(f"------- num_blocks_local:{num_blocks_local} --------")
|
||||
|
||||
# 2. Triger cuda grpah capture
|
||||
self.model_runner.capture_model()
|
||||
set_random_seed(self.fd_config.model_config.seed)
|
||||
# NOTE(yuzhe.wu): Using the old version of the calculation num_blocks_global method,
|
||||
# because the new version that adopting allreduce min will report a bad request error
|
||||
# when running 300b model. The Relation commit:
|
||||
# https://github.com/PaddlePaddle/FastDeploy/commit/2f74e93d7e87aa3ffec3fc6966bf11ab5363b956
|
||||
|
||||
def check_health(self) -> bool:
|
||||
""" """
|
||||
return True
|
||||
# 3. Send IPCSignal
|
||||
get_profile_block_num = np.zeros(shape=[self.ranks], dtype=np.int32)
|
||||
self.get_profile_block_num_signal = IPCSignal(
|
||||
name="get_profile_block_num",
|
||||
array=get_profile_block_num,
|
||||
dtype=np.int32,
|
||||
suffix=self.parallel_config.engine_pid,
|
||||
create=False,
|
||||
)
|
||||
self.get_profile_block_num_signal.value[self.local_rank] = num_blocks_local
|
||||
|
||||
def cal_theortical_kvcache(self) -> int:
|
||||
""" """
|
||||
return self.model_runner.cal_theortical_kvcache()
|
||||
# Wait all worker send the signal
|
||||
while np.any(self.get_profile_block_num_signal.value <= 0):
|
||||
time.sleep(0.01)
|
||||
num_blocks_global = self.get_profile_block_num_signal.value.min().item()
|
||||
|
||||
if num_blocks_global < 0:
|
||||
logger.error(
|
||||
"The total number of blocks cannot be less than zero."
|
||||
"Please increase gpu_memory_utilization"
|
||||
"Or decrease max_num_batched_tokens(max model length) "
|
||||
)
|
||||
raise ValueError(
|
||||
"The total number of blocks cannot be less than zero."
|
||||
"Please increase gpu_memory_utilization"
|
||||
"Or decrease max_num_batched_tokens(max model length) "
|
||||
)
|
||||
|
||||
self.get_profile_block_num_signal.value[self.local_rank] = num_blocks_global
|
||||
else:
|
||||
num_blocks_global = self.fd_config.parallel_config.total_block_num
|
||||
# 4. init kv_cache with accurate num_blocks
|
||||
logger.info(f"------- num_blocks_global:{num_blocks_global} --------")
|
||||
self.worker.initialize_cache(num_gpu_blocks=num_blocks_global)
|
||||
|
Reference in New Issue
Block a user