[BugFix] fix multinode deployment (#2977)

This commit is contained in:
ltd0924
2025-07-24 15:04:04 +08:00
committed by GitHub
parent 3792345c3a
commit f935d6f862
9 changed files with 71 additions and 81 deletions

View File

@@ -138,20 +138,10 @@ class EngineArgs:
"""
Token slot threshold for preallocating decoder blocks.
"""
ips: Optional[List[str]] = None
"""
The ips of multinode deployment
dist_init_ip: Optional[str] = None
"""
The master node ip of multinode deployment
"""
nnodes: int = 1
"""
The number of nodes in multinode deployment
"""
node_rank: int = 0
"""
The rank of the current node in multinode deployment
"""
swap_space: float = None
@@ -566,24 +556,11 @@ class EngineArgs:
# Cluster system parameters group
system_group = parser.add_argument_group("System Configuration")
system_group.add_argument(
"--dist-init-ip",
default=EngineArgs.dist_init_ip,
help="IP addresses of master node.",
)
system_group.add_argument(
"--nnodes",
type=int,
default=EngineArgs.nnodes,
help="The number of all nodes.",
)
system_group.add_argument(
"--node-rank",
type=int,
default=EngineArgs.node_rank,
help="node rank id (range [0, nnodes)).",
)
"--ips",
type=lambda s: s.split(",") if s else None,
default=EngineArgs.ips,
help=
"IP addresses of all nodes participating in distributed inference.")
# Performance tuning parameters group
perf_group = parser.add_argument_group("Performance Tuning")
@@ -899,9 +876,7 @@ class EngineArgs:
max_num_seqs=self.max_num_seqs,
speculative_config=speculative_cfg,
max_num_batched_tokens=self.max_num_batched_tokens,
dist_init_ip=self.dist_init_ip,
nnodes=self.nnodes,
node_rank=self.node_rank,
ips=self.ips,
use_warmup=self.use_warmup,
engine_worker_queue_port=self.engine_worker_queue_port,
limit_mm_per_prompt=self.limit_mm_per_prompt,

View File

@@ -6,7 +6,6 @@
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#dist_init_ip
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@@ -27,7 +26,6 @@ from fastdeploy.utils import (
ceil_div,
check_unified_ckpt,
get_host_ip,
get_random_port,
is_port_available,
llm_logger,
)
@@ -644,9 +642,7 @@ class Config:
max_model_len: int = 8192,
max_num_seqs: int = 8,
max_num_batched_tokens: Optional[int] = None,
dist_init_ip: str = None,
nnodes: int = 1,
node_rank: int = 0,
ips: str = None,
speculative_config: Optional[Dict[str, Any]] = None,
graph_optimization_config: Optional[Dict[str, Any]] = None,
use_warmup: bool = False,
@@ -701,15 +697,25 @@ class Config:
self.tokenizer = tokenizer
self.max_num_batched_tokens = max_num_batched_tokens
self.tensor_parallel_size = tensor_parallel_size
self.dist_init_ip = dist_init_ip
self.ips = ips
self.nnode = nnodes
self.node_rank = node_rank
if self.dist_init_ip is None:
if self.ips is None:
self.master_ip = "0.0.0.0"
elif isinstance(self.ips, list):
self.master_ip = self.ips[0]
else:
self.master_ip = self.dist_init_ip
self.dist_init_addr = f"{self.dist_init_ip}:{get_random_port()}"
self.ips = self.ips.split(",")
self.master_ip = self.ips[0]
if self.ips is None:
self.nnode = 1
self.node_rank = 0
else:
self.nnode = len(self.ips)
for idx, ip in enumerate(self.ips):
if ip == self.master_ip:
self.node_rank = idx
self.max_model_len = max_model_len
self.max_num_seqs = max_num_seqs
@@ -773,14 +779,11 @@ class Config:
self.device_ids.split(",").__len__() == self.worker_num_per_node
), f"invalid CUDA_VISIBLE_DEVICES, should be equal to {self.worker_num_per_node}"
assert (
self.worker_num_per_node % self.tensor_parallel_size == 0
), f"tensor_parallel_size: {self.tensor_parallel_size} should be divisible by worker_num_per_node: {self.worker_num_per_node}"
self.local_device_ids = self.device_ids.split(",")[: self.tensor_parallel_size]
self.host_ip = get_host_ip()
if self.dist_init_ip is None or self.host_ip == self.master_ip:
if self.ips is None or self.host_ip == self.master_ip:
self.is_master = True
else:
self.is_master = False
@@ -817,9 +820,6 @@ class Config:
assert is_port_available(
"0.0.0.0", self.engine_worker_queue_port
), f"The parameter `engine_worker_queue_port`:{self.engine_worker_queue_port} is already in use."
assert (
self.max_chips_per_node >= self.tensor_parallel_size > 0
), f"tensor_parallel_size: {self.tensor_parallel_size} should be between 1 and {self.max_chips_per_node}"
assert self.nnode >= 1, f"nnode: {self.nnode} should no less than 1"
assert self.max_model_len >= 16, f"max_model_len: {self.max_model_len} should be larger than 16"
assert self.max_num_seqs >= 1, f"max_num_seqs: {self.max_num_seqs} should be larger than 1"

View File

@@ -994,10 +994,6 @@ class LLMEngine:
配置环境变量
"""
variables = {
"PADDLE_TRAINER_ID": 0,
"PADDLE_TRAINERS_NUM": 1,
"TRAINER_INSTANCES_NUM": 1,
"TRAINER_INSTANCES": "0.0.0.0",
"ENABLE_FASTDEPLOY_LOAD_MODEL_CONCURRENCY": 0,
"LOAD_STATE_DICT_THREAD_NUM": len(self.cfg.device_ids.split(",")),
"PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION": "python",
@@ -1107,11 +1103,7 @@ class LLMEngine:
if value:
arguments = arguments + f" --{worker_flag}"
if self.cfg.nnode > 1:
pd_cmd = pd_cmd + (
f" --master {self.cfg.dist_init_addr}"
f" --nnodes {self.cfg.nnode!s}"
f" --rank {self.cfg.node_rank!s}"
)
pd_cmd = pd_cmd + f" --ips {','.join(self.cfg.ips)} --nnodes {len(self.cfg.ips)}"
pd_cmd = pd_cmd + arguments + f" 2>{log_dir}/launch_worker.log"
llm_logger.info(f"Launch worker service command: {pd_cmd}")
p = subprocess.Popen(

View File

@@ -22,6 +22,7 @@ import numpy as np
from fastdeploy.input.preprocess import InputPreprocessor
from fastdeploy.inter_communicator import IPCSignal, ZmqClient
from fastdeploy.metrics.work_metrics import work_process_metrics
from fastdeploy.platforms import current_platform
from fastdeploy.utils import EngineError, api_server_logger
@@ -40,6 +41,7 @@ class EngineClient:
mm_processor_kwargs,
enable_mm=False,
reasoning_parser=None,
data_parallel_size=1
):
input_processor = InputPreprocessor(
tokenizer,
@@ -52,7 +54,10 @@ class EngineClient:
self.reasoning_parser = reasoning_parser
self.data_processor = input_processor.create_processor()
self.max_model_len = max_model_len
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[tensor_parallel_size], dtype=np.int32)
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
array_size = min(
max_chips_per_node, tensor_parallel_size * data_parallel_size)
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[array_size], dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal(
name="worker_healthy_live_signal",
array=self.worker_healthy_live_recorded_time_array,

View File

@@ -113,10 +113,11 @@ async def lifespan(app: FastAPI):
args.mm_processor_kwargs,
args.enable_mm,
args.reasoning_parser,
args.data_parallel_size
)
app.state.dynamic_load_weight = args.dynamic_load_weight
chat_handler = OpenAIServingChat(engine_client, pid, args.dist_init_ip)
completion_handler = OpenAIServingCompletion(engine_client, pid, args.dist_init_ip)
chat_handler = OpenAIServingChat(engine_client, pid, args.ips)
completion_handler = OpenAIServingCompletion(engine_client, pid, args.ips)
engine_client.create_zmq_client(model=pid, mode=zmq.PUSH)
engine_client.pid = pid
app.state.engine_client = engine_client

View File

@@ -19,7 +19,7 @@ import time
import traceback
import uuid
from typing import List, Optional
import numpy as np
import aiozmq
import msgpack
from aiozmq import zmq
@@ -48,11 +48,16 @@ class OpenAIServingChat:
OpenAI-style chat completions serving
"""
def __init__(self, engine_client, pid, dist_init_ip):
def __init__(self, engine_client, pid, ips):
self.engine_client = engine_client
self.pid = pid
self.master_ip = dist_init_ip
self.master_ip = ips
self.host_ip = get_host_ip()
if self.master_ip is not None:
if isinstance(self.master_ip, list):
self.master_ip = self.master_ip[0]
else:
self.master_ip = self.master_ip.split(",")[0]
def _check_master(self):
if self.master_ip is None:
@@ -80,6 +85,8 @@ class OpenAIServingChat:
current_req_dict = request.to_dict_for_infer(request_id)
current_req_dict["arrival_time"] = time.time()
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
if isinstance(prompt_token_ids, np.ndarray):
prompt_token_ids = prompt_token_ids.tolist()
except Exception as e:
return ErrorResponse(code=400, message=str(e))

View File

@@ -18,7 +18,7 @@ import asyncio
import time
import uuid
from typing import List
import numpy as np
import aiozmq
import msgpack
from aiozmq import zmq
@@ -37,11 +37,17 @@ from fastdeploy.utils import api_server_logger, get_host_ip
class OpenAIServingCompletion:
def __init__(self, engine_client, pid, dist_init_ip):
def __init__(self, engine_client, pid, ips):
self.engine_client = engine_client
self.pid = pid
self.master_ip = dist_init_ip
self.master_ip = ips
self.host_ip = get_host_ip()
if self.master_ip is not None:
if isinstance(self.master_ip, list):
self.master_ip = self.master_ip[0]
else:
self.master_ip = self.master_ip.split(",")[0]
def _check_master(self):
if self.master_ip is None:
@@ -97,7 +103,10 @@ class OpenAIServingCompletion:
current_req_dict = request.to_dict_for_infer(request_id_idx, prompt)
try:
current_req_dict["arrival_time"] = time.time()
prompt_batched_token_ids.append(self.engine_client.format_and_add_data(current_req_dict))
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
if isinstance(prompt_token_ids, np.ndarray):
prompt_token_ids = prompt_token_ids.tolist()
prompt_batched_token_ids.append(prompt_token_ids)
except Exception as e:
return ErrorResponse(message=str(e), code=400)

View File

@@ -100,13 +100,14 @@ class GpuWorker(WorkerBase):
# 1. Record memory state before profile run
start_time = time.perf_counter()
Gb = 1024**3
paddle.device.cuda.reset_max_memory_reserved(self.local_rank)
paddle.device.cuda.reset_max_memory_allocated(self.local_rank)
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(self.local_rank) # not reserved
local_rank = self.local_rank % self.max_chips_per_node
paddle.device.cuda.reset_max_memory_reserved(local_rank)
paddle.device.cuda.reset_max_memory_allocated(local_rank)
paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(local_rank)
paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(local_rank) # not reserved
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(int(self.device_ids[self.local_rank]))
handle = pynvml.nvmlDeviceGetHandleByIndex(int(self.device_ids[local_rank]))
before_run_meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
logger.info(
@@ -124,8 +125,8 @@ class GpuWorker(WorkerBase):
self.model_runner.profile_run()
# 3. Statistical memory information
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(self.local_rank)
paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(local_rank)
paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(local_rank)
model_block_memory_used = self.cal_theortical_kvcache()
paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run

View File

@@ -149,7 +149,7 @@ class PaddleDisWorkerProc:
self.parallel_config.pod_ip,
self.parallel_config.engine_worker_queue_port,
)
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
self.task_queue = TaskQueue(
address=task_address,
is_server=False,
@@ -193,7 +193,7 @@ class PaddleDisWorkerProc:
suffix=self.parallel_config.engine_pid,
create=False,
)
self.worker_healthy_live_signal.value[self.local_rank % 8] = int(time.time())
self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(time.time())
# init model_weights_status
workers_model_weights = np.zeros(shape=[1], dtype=np.int32)
@@ -388,7 +388,7 @@ class PaddleDisWorkerProc:
dist.all_reduce(num_blocks_local, op=dist.ReduceOp.MIN)
num_blocks_local = num_blocks_local.item()
if self.local_rank == 0:
if self.local_rank % self.max_chips_per_node == 0:
# 3. Send IPCSignal
get_profile_block_num = np.zeros(shape=[1], dtype=np.int32)
self.get_profile_block_num_signal = IPCSignal(