mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
更新example 和模型转换代码
This commit is contained in:
55
examples/vision/keypointdetection/tiny_pose/rknpu2/README.md
Normal file
55
examples/vision/keypointdetection/tiny_pose/rknpu2/README.md
Normal file
@@ -0,0 +1,55 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PP-TinyPose RKNPU2部署示例
|
||||
|
||||
## 模型版本说明
|
||||
|
||||
- [PaddleDetection release/2.5](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5)
|
||||
|
||||
目前FastDeploy支持如下模型的部署
|
||||
|
||||
- [PP-TinyPose系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/keypoint/tiny_pose/README.md)
|
||||
|
||||
## 准备PP-TinyPose部署模型
|
||||
|
||||
PP-TinyPose模型导出,请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/EXPORT_MODEL.md)
|
||||
|
||||
**注意**:PP-TinyPose导出的模型包含`model.pdmodel`、`model.pdiparams`和`infer_cfg.yml`三个文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息。
|
||||
|
||||
## 模型转换example
|
||||
|
||||
### Paddle模型转换为ONNX模型
|
||||
|
||||
由于Rockchip提供的rknn-toolkit2工具暂时不支持Paddle模型直接导出为RKNN模型,因此需要先将Paddle模型导出为ONNX模型,再将ONNX模型转为RKNN模型。
|
||||
|
||||
```bash
|
||||
# 下载Paddle静态图模型并解压
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
|
||||
tar -xvf PP_TinyPose_256x192_infer.tgz
|
||||
|
||||
# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
|
||||
paddle2onnx --model_dir PP_TinyPose_256x192_infer \
|
||||
--model_filename model.pdmodel \
|
||||
--params_filename model.pdiparams \
|
||||
--save_file PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
|
||||
--enable_dev_version True
|
||||
|
||||
# 固定shape
|
||||
python -m paddle2onnx.optimize --input_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
|
||||
--output_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
|
||||
--input_shape_dict "{'image':[1,3,256,192]}"
|
||||
```
|
||||
|
||||
### ONNX模型转RKNN模型
|
||||
|
||||
为了方便大家使用,我们提供了python脚本,通过我们预配置的config文件,你将能够快速地转换ONNX模型到RKNN模型
|
||||
|
||||
```bash
|
||||
python tools/rknpu2/export.py --config_path tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml \
|
||||
--target_platform rk3588
|
||||
```
|
||||
|
||||
## 详细部署文档
|
||||
|
||||
- [模型详细介绍](../README_CN.md)
|
||||
- [Python部署](python)
|
||||
- [C++部署](cpp)
|
@@ -0,0 +1,13 @@
|
||||
PROJECT(infer_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(infer_tinypose_demo ${PROJECT_SOURCE_DIR}/pptinypose_infer.cc)
|
||||
target_link_libraries(infer_tinypose_demo ${FASTDEPLOY_LIBS})
|
@@ -0,0 +1,85 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PP-TinyPose C++部署示例
|
||||
|
||||
本目录下提供`pptinypose_infer.cc`快速完成PP-TinyPose通过NPU加速部署的`单图单人关键点检测`示例
|
||||
>> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测,因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../../det_keypoint_unite/cpp/README.md)
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
|
||||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.3以上(x.x.x>=1.0.3)
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# 下载PP-TinyPose模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
|
||||
tar -xvf PP_TinyPose_256x192_infer.tgz
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
|
||||
</div>
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
## PP-TinyPose C++接口
|
||||
|
||||
### PP-TinyPose类
|
||||
|
||||
```c++
|
||||
fastdeploy::vision::keypointdetection::PPTinyPose(
|
||||
const string& model_file,
|
||||
const string& params_file = "",
|
||||
const string& config_file,
|
||||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||
```
|
||||
|
||||
PPTinyPose模型加载和初始化,其中model_file为导出的Paddle模型格式。
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **config_file**(str): 推理部署配置文件
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
|
||||
|
||||
#### Predict函数
|
||||
|
||||
> ```c++
|
||||
> PPTinyPose::Predict(cv::Mat* im, KeyPointDetectionResult* result)
|
||||
> ```
|
||||
>
|
||||
> 模型预测接口,输入图像直接输出关键点检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||
> > * **result**: 关键点检测结果,包括关键点的坐标以及关键点对应的概率值, KeyPointDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
### 类成员属性
|
||||
#### 后处理参数
|
||||
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
70
examples/vision/keypointdetection/tiny_pose/rknpu2/cpp/pptinypose_infer.cc
Executable file
70
examples/vision/keypointdetection/tiny_pose/rknpu2/cpp/pptinypose_infer.cc
Executable file
@@ -0,0 +1,70 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
void RKNPU2Infer(const std::string& tinypose_model_dir,
|
||||
const std::string& image_file) {
|
||||
auto tinypose_model_file =
|
||||
tinypose_model_dir + "/picodet_s_416_coco_lcnet_rk3588.rknn";
|
||||
auto tinypose_params_file = "";
|
||||
auto tinypose_config_file = tinypose_model_dir + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseRKNPU2();
|
||||
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
|
||||
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
|
||||
|
||||
if (!tinypose_model.Initialized()) {
|
||||
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
tinypose_model.DisablePermute();
|
||||
tinypose_model.DisableNormalize();
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
fastdeploy::vision::KeyPointDetectionResult res;
|
||||
if (!tinypose_model.Predict(&im, &res)) {
|
||||
std::cerr << "TinyPose Prediction Failed." << std::endl;
|
||||
return;
|
||||
} else {
|
||||
std::cout << "TinyPose Prediction Done!" << std::endl;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
auto tinypose_vis_im = fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
|
||||
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
|
||||
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout << "Usage: infer_demo path/to/pptinypose_model_dir path/to/image "
|
||||
"run_option, "
|
||||
"e.g ./infer_model ./pptinypose_model_dir ./test.jpeg 0"
|
||||
<< std::endl;
|
||||
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
||||
"with gpu; 2: run with gpu and use tensorrt backend; 3: run "
|
||||
"with kunlunxin."
|
||||
<< std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (std::atoi(argv[3]) == 0) {
|
||||
RKNPU2Infer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -16,7 +16,7 @@ cd path/to/paddleseg/sophgo/python
|
||||
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
|
||||
# PaddleSeg模型转换为bmodel模型
|
||||
将Paddle模型转换为SOPHGO bmodel模型,转换步骤参考[文档](../README_CN.md#将paddleseg推理模型转换为bmodel模型步骤)
|
||||
将Paddle模型转换为SOPHGO bmodel模型,转换步骤参考[文档](../README.md#将paddleseg推理模型转换为bmodel模型步骤)
|
||||
|
||||
# 推理
|
||||
python3 infer.py --model_file ./bmodel/pp_liteseg_1684x_f32.bmodel --config_file ./bmodel/deploy.yaml --image cityscapes_demo.png
|
||||
|
15
tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml
Normal file
15
tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml
Normal file
@@ -0,0 +1,15 @@
|
||||
mean:
|
||||
-
|
||||
- 123.675
|
||||
- 116.28
|
||||
- 103.53
|
||||
std:
|
||||
-
|
||||
- 58.395
|
||||
- 57.12
|
||||
- 57.375
|
||||
model_path: ./PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx
|
||||
outputs_nodes: ['conv2d_441.tmp_1']
|
||||
do_quantization: False
|
||||
dataset:
|
||||
output_folder: "./PP_TinyPose_256x192_infer"
|
Reference in New Issue
Block a user