[Cherry-Pick] Launch expert_service before kv_cache initialization in worker_process (#3558)

* launch expert_service before kv_cache initialization

* update code

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
This commit is contained in:
Zero Rains
2025-08-23 13:08:34 +08:00
committed by GitHub
parent e8af92aab7
commit f8d3255520
3 changed files with 149 additions and 75 deletions

View File

@@ -210,13 +210,42 @@ class LLMEngine:
engine_worker_queue_port=self.cfg.engine_worker_queue_port, engine_worker_queue_port=self.cfg.engine_worker_queue_port,
pid_suffix=self.ipc_signal_suffix, pid_suffix=self.ipc_signal_suffix,
) )
self.launched_cache_manager_signal.value[0] = 1
self.worker_proc = self._start_worker_service() self.worker_proc = self._start_worker_service()
console_logger.info("Waitting worker processes ready...") console_logger.info("Waitting worker processes ready...")
time.sleep(5) time.sleep(5)
self.worker_init_status = dict() self.worker_init_status = dict()
if not self.check_worker_initialize_status():
result_container = {}
def check_worker_initialize_status_func(res: dict):
res["worker_is_alive"] = True
if not self.check_worker_initialize_status():
console_logger.error("Failed to launch worker processes, check log/workerlog.* for more details.")
res["worker_is_alive"] = False
self.check_worker_initialize_status_func_thread = threading.Thread(
target=check_worker_initialize_status_func, args=(result_container,), daemon=True
)
self.check_worker_initialize_status_func_thread.start()
# Wait model loading
while self.loaded_model_signal.value[0] == 0:
# Make sure worker process is alive
if not self.check_worker_initialize_status_func_thread.is_alive():
return False
time.sleep(1)
if self.do_profile:
self._stop_profile()
# Launch components: scheduler, cache_manager, expert_service et.al.
self.launch_components()
if self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != "mixed":
self.launched_cache_manager_signal.value[0] = 1
# Worker launched
self.check_worker_initialize_status_func_thread.join()
if not result_container["worker_is_alive"]:
console_logger.error("Failed to launch worker processes, check log/workerlog.* for more details.") console_logger.error("Failed to launch worker processes, check log/workerlog.* for more details.")
return False return False
@@ -228,68 +257,6 @@ class LLMEngine:
self._del_warmup_token_processor() self._del_warmup_token_processor()
console_logger.info("Warmup finished") console_logger.info("Warmup finished")
self.token_processor.tasks_queue = self.engine_worker_queue
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
self.insert_task_to_worker_thread = threading.Thread(target=self._scheduler_task_to_worker_v1, daemon=True)
else:
self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, daemon=True)
self.insert_task_to_worker_thread.start()
if self.api_server_pid is not None:
self.insert_task_to_scheduler_thread = threading.Thread(
target=self._insert_zmq_task_to_scheduler, daemon=True
)
self.insert_task_to_scheduler_thread.start()
self.receive_output_thread = threading.Thread(target=self._zmq_send_generated_tokens, daemon=True)
self.receive_output_thread.start()
# Start TokenProcessor thread
self.token_processor.run()
if self.cfg.splitwise_role != "mixed":
# 单机逻辑
self.engine_worker_queue.available_prefill_instances.put(1)
self.split_mode_get_tasks()
if self.cfg.scheduler_config.name == "splitwise":
self.splitwise_receive_thread = threading.Thread(target=self.split_connector.start_receiver, args=())
self.splitwise_receive_thread.daemon = True
self.splitwise_receive_thread.start()
self.cfg.init_cache_info()
role = self.cfg.splitwise_role
host_ip = self.cfg.host_ip
disaggregate = self.cfg.disaggregate_info
if self.cfg.scheduler_config.name == "splitwise":
self.scheduler.start(role, host_ip, disaggregate)
time.sleep(1)
if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1:
self.dp_processed = []
for i in range(
1,
self.cfg.parallel_config.data_parallel_size // self.cfg.nnode,
):
time.sleep(1)
self.dp_processed.append(
multiprocessing.Process(
target=start_expert_service,
args=(
self.cfg,
i + self.cfg.node_rank * self.cfg.worker_num_per_node,
self.ipc_signal_suffix,
),
)
)
llm_logger.info(
f"Engine is initialized successfully with {self.cfg.tensor_parallel_size}"
+ f" data parallel id {i}"
)
self.dp_processed[-1].start()
console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.") console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.")
return True return True
@@ -950,7 +917,6 @@ class LLMEngine:
suffix=self.ipc_signal_suffix, suffix=self.ipc_signal_suffix,
create=True, create=True,
) )
# launched_cache_manager_signal 用于感知engine是否启动了cache_manager # launched_cache_manager_signal 用于感知engine是否启动了cache_manager
if self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != "mixed": if self.cfg.cache_config.enable_prefix_caching or self.cfg.splitwise_role != "mixed":
launched_cache_manager_signal_data = np.zeros([1], dtype=np.int32) launched_cache_manager_signal_data = np.zeros([1], dtype=np.int32)
@@ -962,6 +928,29 @@ class LLMEngine:
create=True, create=True,
) )
# launched_expert_service_signal: Used to sense whether each expet_servic is started successfully
if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1:
launched_expert_service_signal_data = np.zeros(
shape=[self.cfg.parallel_config.data_parallel_size // self.cfg.nnode], dtype=np.int32
)
self.launched_expert_service_signal = IPCSignal(
name="launched_expert_service_signal",
array=launched_expert_service_signal_data,
dtype=np.int32,
suffix=self.ipc_signal_suffix,
create=True,
)
# loaded_model_signal: Used to detect whether each worker has completed model loading
loaded_model_signal_data = np.zeros([1], dtype=np.int32)
self.loaded_model_signal = IPCSignal(
name="loaded_model_signal",
array=loaded_model_signal_data,
dtype=np.int32,
suffix=self.ipc_signal_suffix,
create=True,
)
# worker_live_signal 用于engine感知各worker进程是否存活记录每个step 时间 # worker_live_signal 用于engine感知各worker进程是否存活记录每个step 时间
worker_healthy_live_recorded_time_array = np.zeros(shape=[self.cfg.worker_num_per_node], dtype=np.int32) worker_healthy_live_recorded_time_array = np.zeros(shape=[self.cfg.worker_num_per_node], dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal( self.worker_healthy_live_signal = IPCSignal(
@@ -1244,7 +1233,6 @@ class LLMEngine:
engine_worker_queue_port=self.cfg.engine_worker_queue_port, engine_worker_queue_port=self.cfg.engine_worker_queue_port,
pid_suffix=self.ipc_signal_suffix, pid_suffix=self.ipc_signal_suffix,
) )
self.launched_cache_manager_signal.value[0] = 1
def check_health(self, time_interval_threashold=30): def check_health(self, time_interval_threashold=30):
""" """
@@ -1258,6 +1246,72 @@ class LLMEngine:
return True, "" return True, ""
def launch_components(self):
self.token_processor.tasks_queue = self.engine_worker_queue
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
self.insert_task_to_worker_thread = threading.Thread(target=self._scheduler_task_to_worker_v1, daemon=True)
else:
self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, daemon=True)
self.insert_task_to_worker_thread.start()
if self.api_server_pid is not None:
self.insert_task_to_scheduler_thread = threading.Thread(
target=self._insert_zmq_task_to_scheduler, daemon=True
)
self.insert_task_to_scheduler_thread.start()
self.receive_output_thread = threading.Thread(target=self._zmq_send_generated_tokens, daemon=True)
self.receive_output_thread.start()
# Start TokenProcessor thread
self.token_processor.run()
if self.cfg.splitwise_role != "mixed":
# 单机逻辑
self.engine_worker_queue.available_prefill_instances.put(1)
self.split_mode_get_tasks()
if self.cfg.scheduler_config.name == "splitwise":
self.splitwise_receive_thread = threading.Thread(target=self.split_connector.start_receiver, args=())
self.splitwise_receive_thread.daemon = True
self.splitwise_receive_thread.start()
self.cfg.init_cache_info()
role = self.cfg.splitwise_role
host_ip = self.cfg.host_ip
disaggregate = self.cfg.disaggregate_info
if self.cfg.scheduler_config.name == "splitwise":
self.scheduler.start(role, host_ip, disaggregate)
time.sleep(1)
expert_service_nums = self.cfg.parallel_config.data_parallel_size // self.cfg.nnode
if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1:
self.dp_processed = []
for i in range(
1,
expert_service_nums,
):
time.sleep(1)
self.dp_processed.append(
multiprocessing.Process(
target=start_expert_service,
args=(
self.cfg,
i + self.cfg.node_rank * self.cfg.worker_num_per_node,
self.ipc_signal_suffix,
),
)
)
llm_logger.info(
f"Engine is initialized successfully with {self.cfg.tensor_parallel_size}"
+ f" data parallel id {i}"
)
self.dp_processed[-1].start()
for i in range(1, expert_service_nums):
while self.launched_expert_service_signal.value[i] == 0:
time.sleep(1)
def check_worker_initialize_status(self): def check_worker_initialize_status(self):
""" """
Check the initlialize status of workers by stdout logging Check the initlialize status of workers by stdout logging
@@ -1283,10 +1337,6 @@ class LLMEngine:
self.checking_worker_status_thread = threading.Thread(target=detect_thread, daemon=True) self.checking_worker_status_thread = threading.Thread(target=detect_thread, daemon=True)
self.checking_worker_status_thread.start() self.checking_worker_status_thread.start()
checking_worker_init_kv_cache_status_thread = None
if self.do_profile:
checking_worker_init_kv_cache_status_thread = threading.Thread(target=self._stop_profile, daemon=True)
checking_worker_init_kv_cache_status_thread.start()
# display weight loadding progress # display weight loadding progress
with tqdm(total=100, desc="Loading Weights") as pbar: with tqdm(total=100, desc="Loading Weights") as pbar:
@@ -1317,8 +1367,6 @@ class LLMEngine:
self.worker_init_status["finished"] = True self.worker_init_status["finished"] = True
try: try:
self.checking_worker_status_thread.join(timeout=1) self.checking_worker_status_thread.join(timeout=1)
if checking_worker_init_kv_cache_status_thread is not None:
checking_worker_init_kv_cache_status_thread.join(timeout=1)
except Exception: except Exception:
pass pass
return True return True

View File

@@ -26,7 +26,7 @@ import weakref
import numpy as np import numpy as np
from fastdeploy.engine.resource_manager import ResourceManager from fastdeploy.engine.resource_manager import ResourceManager
from fastdeploy.inter_communicator import EngineWorkerQueue from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal
from fastdeploy.metrics.metrics import main_process_metrics from fastdeploy.metrics.metrics import main_process_metrics
from fastdeploy.output.token_processor import TokenProcessor from fastdeploy.output.token_processor import TokenProcessor
from fastdeploy.splitwise.splitwise_connector import SplitwiseConnector from fastdeploy.splitwise.splitwise_connector import SplitwiseConnector
@@ -127,7 +127,7 @@ class ExpertService:
cache_config=self.cfg.cache_config, cache_config=self.cfg.cache_config,
tensor_parallel_size=self.cfg.tensor_parallel_size, tensor_parallel_size=self.cfg.tensor_parallel_size,
device_ids=self.cfg.local_device_ids, device_ids=self.cfg.local_device_ids,
pod_ip=self.cfg.pod_ips[0], pod_ip=self.cfg.master_ip,
engine_worker_queue_port=self.cfg.engine_worker_queue_port, engine_worker_queue_port=self.cfg.engine_worker_queue_port,
pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}", pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}",
) )
@@ -150,7 +150,22 @@ class ExpertService:
self.scheduler.start(role, host_ip, disaggregate) self.scheduler.start(role, host_ip, disaggregate)
self.cfg.print() self.cfg.print()
console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.") launched_expert_service_signal_data = np.zeros(
shape=[self.cfg.parallel_config.data_parallel_size // self.cfg.nnode], dtype=np.int32
)
self.launched_expert_service_signal = IPCSignal(
name="launched_expert_service_signal",
array=launched_expert_service_signal_data,
dtype=np.int32,
suffix=ipc_signal_suffix,
create=False,
)
local_rank = local_data_parallel_id % self.cfg.worker_num_per_node
self.launched_expert_service_signal.value[local_rank] = 1
console_logger.info(
f"Worker processes(rank {local_rank}) are launched with {time.time() - start_time} seconds."
)
return True return True
def _insert_task_to_worker(self): def _insert_task_to_worker(self):

View File

@@ -458,6 +458,17 @@ class PaddleDisWorkerProc:
def load_model(self) -> None: def load_model(self) -> None:
"""Load weights and create model""" """Load weights and create model"""
self.worker.load_model() self.worker.load_model()
loaded_model_signal_data = np.zeros(shape=[1], dtype=np.int32)
self.loaded_model_signal = IPCSignal(
name="loaded_model_signal",
array=loaded_model_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
if self.ranks > 1:
paddle.distributed.barrier()
self.loaded_model_signal.value[0] = 1
def parse_args(): def parse_args():