[Feature] support clear data (#4185)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled

* fix

* fix

* fix

* [Feature] support clear data

* update

* fix

* fix

* fix

* fix
This commit is contained in:
ltd0924
2025-09-21 20:41:27 +08:00
committed by GitHub
parent 1e86418c4a
commit f75697c2d1
11 changed files with 70 additions and 1 deletions

View File

@@ -751,6 +751,18 @@ class EngineSevice:
def check_and_free_block_tables(self): def check_and_free_block_tables(self):
self.resource_manager.check_and_free_block_tables() self.resource_manager.check_and_free_block_tables()
def clear_data(self):
try:
llm_logger.info("Clear Data: Start")
self.token_processor.clear_data()
self.engine_worker_queue.clear_data()
self.zmq_server.req_dict.clear()
llm_logger.info("Clear Data: Successfully")
return True
except Exception as e:
llm_logger.error(f"Clear data error: {e}")
return False
def _exit_sub_services(self): def _exit_sub_services(self):
""" """
exit sub services exit sub services

View File

@@ -548,3 +548,7 @@ class ResourceManagerV1(ResourceManager):
del self.requests[req_id] del self.requests[req_id]
except Exception as e: except Exception as e:
llm_logger.error(f"finish_request err: {e}, {str(traceback.format_exc())}") llm_logger.error(f"finish_request err: {e}, {str(traceback.format_exc())}")
def clear_data(self):
self.waiting: deque[Request] = deque()
self.to_be_rescheduled_request_id_set = set()

View File

@@ -359,3 +359,6 @@ class EngineClient:
return False, "clear model weight timeout" return False, "clear model weight timeout"
time.sleep(1) time.sleep(1)
return True, "" return True, ""
def check_model_weight_status(self):
return self.model_weights_status_signal.value[0] < 0

View File

@@ -478,6 +478,7 @@ def reset_scheduler():
if llm_engine is None: if llm_engine is None:
return Response("Engine not loaded", status_code=500) return Response("Engine not loaded", status_code=500)
llm_engine.engine.clear_data()
llm_engine.engine.scheduler.reset() llm_engine.engine.scheduler.reset()
return Response("Scheduler Reset Successfully", status_code=200) return Response("Scheduler Reset Successfully", status_code=200)

View File

@@ -210,6 +210,8 @@ class OpenAIServingChat:
decoder_base_url=self.tokenizer_base_url, decoder_base_url=self.tokenizer_base_url,
) )
while num_choices > 0: while num_choices > 0:
if self.engine_client.check_model_weight_status():
raise ValueError("Engine is clearing model weight")
try: try:
response = await asyncio.wait_for(response_queue.get(), timeout=10) response = await asyncio.wait_for(response_queue.get(), timeout=10)
current_waiting_time = 0 current_waiting_time = 0
@@ -425,6 +427,8 @@ class OpenAIServingChat:
decoder_base_url=self.tokenizer_base_url, decoder_base_url=self.tokenizer_base_url,
) )
while True: while True:
if self.engine_client.check_model_weight_status():
return ErrorResponse(code=400, message="Model weight cleared")
try: try:
response = await asyncio.wait_for(response_queue.get(), timeout=10) response = await asyncio.wait_for(response_queue.get(), timeout=10)
current_waiting_time = 0 current_waiting_time = 0
@@ -513,6 +517,7 @@ class OpenAIServingChat:
if final_res.get("error_msg") is not None and "Recover" in final_res["error_msg"]: if final_res.get("error_msg") is not None and "Recover" in final_res["error_msg"]:
choice.finish_reason = "recover_stop" choice.finish_reason = "recover_stop"
choices.append(choice) choices.append(choice)
num_prompt_tokens = len(prompt_token_ids) num_prompt_tokens = len(prompt_token_ids)

View File

@@ -216,6 +216,8 @@ class OpenAIServingCompletion:
completion_batched_token_ids = [[] for _ in range(num_choices)] completion_batched_token_ids = [[] for _ in range(num_choices)]
current_waiting_time = 0 current_waiting_time = 0
while num_choices > 0: while num_choices > 0:
if self.engine_client.check_model_weight_status():
return ErrorResponse(message="Model weight cleared", code=400)
try: try:
response = await asyncio.wait_for(response_queue.get(), timeout=10) response = await asyncio.wait_for(response_queue.get(), timeout=10)
current_waiting_time = 0 current_waiting_time = 0
@@ -270,7 +272,6 @@ class OpenAIServingCompletion:
return res return res
except Exception as e: except Exception as e:
api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True) api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
raise
finally: finally:
self.engine_client.semaphore.release() self.engine_client.semaphore.release()
if dealer is not None: if dealer is not None:
@@ -333,6 +334,8 @@ class OpenAIServingCompletion:
) )
current_waiting_time = 0 current_waiting_time = 0
while num_choices > 0: while num_choices > 0:
if self.engine_client.check_model_weight_status():
raise ValueError("Engine is clearing model weight")
try: try:
response = await asyncio.wait_for(response_queue.get(), timeout=10) response = await asyncio.wait_for(response_queue.get(), timeout=10)
current_waiting_time = 0 current_waiting_time = 0

View File

@@ -392,6 +392,13 @@ class EngineWorkerQueue:
llm_logger.debug("get tasks from queue success") llm_logger.debug("get tasks from queue success")
return item return item
def clear_data(self):
self.lock.acquire()
self.tasks[:] = list()
self.client_read_flag[:] = [1] * self.num_client
self.lock.release()
llm_logger.info("clear data for engine worker queue")
def cleanup(self): def cleanup(self):
""" """
Exit the worker queue gracefully. Exit the worker queue gracefully.

View File

@@ -516,6 +516,31 @@ class TokenProcessor:
single_head_acceptance_rate single_head_acceptance_rate
) )
def clear_data(self):
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
self.resource_manager.clear_data()
for i in range(self.cfg.max_num_seqs):
if self.resource_manager.stop_flags[i]:
continue
task = self.resource_manager.tasks_list[i]
result = RequestOutput(
request_id=task.request_id,
outputs=CompletionOutput(
index=i,
send_idx=self.tokens_counter[task.request_id],
token_ids=task.eos_token_ids,
draft_token_ids=[],
),
finished=True,
metrics=RequestMetrics(
arrival_time=time.time(),
request_start_time=task.arrival_time,
),
)
is_prefill = task.disaggregate_info is not None and task.disaggregate_info["role"] == "prefill"
self._recycle_resources(task.request_id, i, task, result, is_prefill)
llm_logger.warning(f"clear data for task {task.request_id}")
class WarmUpTokenProcessor(TokenProcessor): class WarmUpTokenProcessor(TokenProcessor):
""" """

View File

@@ -256,6 +256,7 @@ class DynamicWeightManager:
model_runner.update_parameters(pid) model_runner.update_parameters(pid)
elif model_weights_status.value[0] == -1: elif model_weights_status.value[0] == -1:
logger.info("infer engine stopped! start to clear checkpoint...") logger.info("infer engine stopped! start to clear checkpoint...")
model_runner.clear_requests()
model_runner.clear_parameters(pid) model_runner.clear_parameters(pid)
while True: while True:

View File

@@ -1199,6 +1199,10 @@ class GCUModelRunner(ModelRunnerBase):
paddle.device.cuda.empty_cache() paddle.device.cuda.empty_cache()
self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory") self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory")
def clear_requests(self):
"""Dynamic model loader use to clear requests use for RL"""
self.share_inputs["stop_flags"][:] = True
def update_parameters(self, pid): def update_parameters(self, pid):
""" " Dynamic model loader use to update parameters use for RL""" """ " Dynamic model loader use to update parameters use for RL"""
self.dynamic_weight_manager.update_parameters(pid) self.dynamic_weight_manager.update_parameters(pid)

View File

@@ -1729,6 +1729,10 @@ class GPUModelRunner(ModelRunnerBase):
self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory") self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory")
def clear_requests(self):
"""Dynamic model loader use to clear requests use for RL"""
self.share_inputs["stop_flags"][:] = True
def update_parameters(self, pid): def update_parameters(self, pid):
"""Dynamic model loader use to update parameters use for RL""" """Dynamic model loader use to update parameters use for RL"""
# Update parameters # Update parameters