mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 20:11:20 +08:00
[EP] Refactor DeepEP Engine Organization for Mixed Mode & Buffer Management Optimization (#3182)
* Add support for mixed-ep across multi nodes * code refine --------- Co-authored-by: yuanxiaolan <yuanxiaolan01@baidu.com>
This commit is contained in:
@@ -68,8 +68,7 @@ class DeepEPEngine:
|
||||
self.num_local_experts = num_experts // ep_size
|
||||
self.async_finish = async_finish
|
||||
|
||||
self.prefill_deepep_engine = None
|
||||
self.decode_deepep_engine = None
|
||||
self.deepep_engine = None
|
||||
|
||||
self.ep_config = Config(24, 6, 256)
|
||||
self.num_max_dispatch_tokens_per_rank = num_max_dispatch_tokens_per_rank
|
||||
@@ -77,16 +76,12 @@ class DeepEPEngine:
|
||||
# In mixed EP mode on a single node, we dynamically switch between
|
||||
# high throughput and low latency modes.
|
||||
if splitwise_role == "mixed":
|
||||
# decode engine
|
||||
logger.info("Initializing Low Latency Buffer")
|
||||
self.get_low_latency_buffer()
|
||||
# prefill engine
|
||||
self.prefill_deepep_engine = deep_ep.Buffer(
|
||||
self.deepep_engine = deep_ep.Buffer(
|
||||
self.group,
|
||||
int(5e8),
|
||||
0,
|
||||
low_latency_mode=False,
|
||||
num_qps_per_rank=1,
|
||||
int(2e9),
|
||||
int(5e9),
|
||||
low_latency_mode=True,
|
||||
num_qps_per_rank=24,
|
||||
)
|
||||
# In disaggregated mode on mutiple nodes, we either use
|
||||
# high throughput mode or low latency mode.
|
||||
@@ -95,7 +90,7 @@ class DeepEPEngine:
|
||||
logger.info("Initializing Low Latency Buffer")
|
||||
self.get_low_latency_buffer()
|
||||
elif moe_phase.phase == "prefill":
|
||||
self.prefill_deepep_engine = deep_ep.Buffer(
|
||||
self.deepep_engine = deep_ep.Buffer(
|
||||
self.group,
|
||||
int(5e8),
|
||||
0,
|
||||
@@ -124,14 +119,14 @@ class DeepEPEngine:
|
||||
)
|
||||
# Allocate a buffer if not existed or not enough buffer size
|
||||
if (
|
||||
self.decode_deepep_engine is None
|
||||
or self.decode_deepep_engine.group != self.group
|
||||
or not self.decode_deepep_engine.low_latency_mode
|
||||
or self.decode_deepep_engine.num_rdma_bytes < num_rdma_bytes
|
||||
self.deepep_engine is None
|
||||
or self.deepep_engine.group != self.group
|
||||
or not self.deepep_engine.low_latency_mode
|
||||
or self.deepep_engine.num_rdma_bytes < num_rdma_bytes
|
||||
):
|
||||
# NOTES: for best performance, the QP number **must** be equal to the number of the local experts
|
||||
assert self.num_experts % self.ep_size == 0
|
||||
self.decode_deepep_engine = deep_ep.Buffer(
|
||||
self.deepep_engine = deep_ep.Buffer(
|
||||
self.group,
|
||||
0,
|
||||
num_rdma_bytes,
|
||||
@@ -168,7 +163,7 @@ class DeepEPEngine:
|
||||
handle,
|
||||
_,
|
||||
dispatch_hook,
|
||||
) = self.decode_deepep_engine.low_latency_dispatch(
|
||||
) = self.deepep_engine.low_latency_dispatch(
|
||||
hidden_states,
|
||||
topk_idx,
|
||||
expertwise_scale,
|
||||
@@ -210,7 +205,7 @@ class DeepEPEngine:
|
||||
num_experts,
|
||||
)
|
||||
|
||||
combined_hidden_states, _, combine_hook = self.decode_deepep_engine.low_latency_combine(
|
||||
combined_hidden_states, _, combine_hook = self.deepep_engine.low_latency_combine(
|
||||
hidden_states,
|
||||
topk_idx,
|
||||
topk_weights,
|
||||
@@ -224,7 +219,7 @@ class DeepEPEngine:
|
||||
"""
|
||||
clean_low_latency_buffer
|
||||
"""
|
||||
self.decode_deepep_engine.clean_low_latency_buffer(
|
||||
self.deepep_engine.clean_low_latency_buffer(
|
||||
self.num_max_dispatch_tokens_per_rank, self.hidden, self.num_experts
|
||||
)
|
||||
|
||||
@@ -232,11 +227,7 @@ class DeepEPEngine:
|
||||
"""
|
||||
barrier_all
|
||||
"""
|
||||
if self.prefill_deepep_engine is not None:
|
||||
self.prefill_deepep_engine.barrier_all()
|
||||
|
||||
if self.decode_deepep_engine is not None:
|
||||
self.decode_deepep_engine.barrier_all()
|
||||
self.deepep_engine.barrier_all()
|
||||
|
||||
|
||||
class EPRunner:
|
||||
@@ -316,6 +307,9 @@ class EPRunner:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def clean_low_latency_buffer(self):
|
||||
self.ep_engine.clean_low_latency_buffer()
|
||||
|
||||
|
||||
class EPPrefillRunner(EPRunner):
|
||||
"""
|
||||
@@ -328,6 +322,7 @@ class EPPrefillRunner(EPRunner):
|
||||
hidden: int,
|
||||
num_experts: int,
|
||||
splitwise_role: str,
|
||||
num_max_dispatch_tokens_per_rank: int,
|
||||
ep_size: int = 1,
|
||||
ep_rank: int = 0,
|
||||
redundant_experts_num: int = 0,
|
||||
@@ -339,7 +334,7 @@ class EPPrefillRunner(EPRunner):
|
||||
num_experts,
|
||||
splitwise_role,
|
||||
moe_phase,
|
||||
num_max_dispatch_tokens_per_rank=256,
|
||||
num_max_dispatch_tokens_per_rank=num_max_dispatch_tokens_per_rank,
|
||||
ep_size=ep_size,
|
||||
ep_rank=ep_rank,
|
||||
redundant_experts_num=redundant_experts_num,
|
||||
@@ -359,7 +354,7 @@ class EPPrefillRunner(EPRunner):
|
||||
num_tokens_per_expert,
|
||||
is_token_in_rank,
|
||||
_,
|
||||
) = self.ep_engine.prefill_deepep_engine.get_dispatch_layout(topk_idx, self.num_experts)
|
||||
) = self.ep_engine.deepep_engine.get_dispatch_layout(topk_idx, self.num_experts)
|
||||
|
||||
x_scale_tensor = kwargs.get("x_scale_tensor", None)
|
||||
dispatch_args = {
|
||||
@@ -372,7 +367,7 @@ class EPPrefillRunner(EPRunner):
|
||||
"topk_idx": topk_idx,
|
||||
"topk_weights": topk_weights,
|
||||
}
|
||||
return self.ep_engine.prefill_deepep_engine.dispatch(**dispatch_args)
|
||||
return self.ep_engine.deepep_engine.dispatch(**dispatch_args)
|
||||
|
||||
def combine(
|
||||
self,
|
||||
@@ -387,14 +382,14 @@ class EPPrefillRunner(EPRunner):
|
||||
"async_finish": self.ep_engine.async_finish,
|
||||
"topk_weights": recv_topk_weights,
|
||||
}
|
||||
fused_moe_out, _, _ = self.ep_engine.prefill_deepep_engine.combine(**combine_args)
|
||||
fused_moe_out, _, _ = self.ep_engine.deepep_engine.combine(**combine_args)
|
||||
|
||||
return fused_moe_out
|
||||
|
||||
|
||||
class EPDecoderRunner(EPRunner):
|
||||
"""
|
||||
EPPrefillRunner
|
||||
EPDecoderRunner
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
@@ -51,6 +51,7 @@ class MoEMethodBase(QuantMethodBase):
|
||||
layer.hidden_size,
|
||||
layer.num_experts,
|
||||
layer.fd_config.parallel_config.splitwise_role,
|
||||
layer.fd_config.model_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.ep_size,
|
||||
layer.ep_rank,
|
||||
layer.fd_config.model_config.redundant_experts_num,
|
||||
@@ -74,6 +75,7 @@ class MoEMethodBase(QuantMethodBase):
|
||||
layer.hidden_size,
|
||||
layer.num_experts,
|
||||
layer.fd_config.parallel_config.splitwise_role,
|
||||
layer.fd_config.model_config.num_max_dispatch_tokens_per_rank,
|
||||
layer.ep_size,
|
||||
layer.ep_rank,
|
||||
layer.fd_config.model_config.redundant_experts_num,
|
||||
@@ -165,8 +167,10 @@ class MoEMethodBase(QuantMethodBase):
|
||||
"""
|
||||
if layer.ep_size > 1:
|
||||
if layer.fd_config.parallel_config.moe_phase.phase == "prefill":
|
||||
self.ep_prefill_runner.clean_low_latency_buffer()
|
||||
return self.apply_ep_prefill(layer, x, gate_out)
|
||||
else:
|
||||
self.ep_decoder_runner.clean_low_latency_buffer()
|
||||
return self.apply_ep_decode(layer, x, gate_out)
|
||||
else:
|
||||
return self.apply_tp(layer, x, gate_out)
|
||||
|
Reference in New Issue
Block a user