mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Delete main.cc
This commit is contained in:
@@ -1,127 +0,0 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
void BindRuntime(pybind11::module&);
|
||||
void BindFDModel(pybind11::module&);
|
||||
void BindVision(pybind11::module&);
|
||||
|
||||
pybind11::dtype FDDataTypeToNumpyDataType(const FDDataType& fd_dtype) {
|
||||
pybind11::dtype dt;
|
||||
if (fd_dtype == FDDataType::INT32) {
|
||||
dt = pybind11::dtype::of<int32_t>();
|
||||
} else if (fd_dtype == FDDataType::INT64) {
|
||||
dt = pybind11::dtype::of<int64_t>();
|
||||
} else if (fd_dtype == FDDataType::FP32) {
|
||||
dt = pybind11::dtype::of<float>();
|
||||
} else if (fd_dtype == FDDataType::FP64) {
|
||||
dt = pybind11::dtype::of<double>();
|
||||
} else if (fd_dtype == FDDataType::UINT8) {
|
||||
dt = pybind11::dtype::of<uint8_t>();
|
||||
} else {
|
||||
FDASSERT(false, "The function doesn't support data type of %s.",
|
||||
Str(fd_dtype).c_str());
|
||||
}
|
||||
return dt;
|
||||
}
|
||||
|
||||
FDDataType NumpyDataTypeToFDDataType(const pybind11::dtype& np_dtype) {
|
||||
if (np_dtype.is(pybind11::dtype::of<int32_t>())) {
|
||||
return FDDataType::INT32;
|
||||
} else if (np_dtype.is(pybind11::dtype::of<int64_t>())) {
|
||||
return FDDataType::INT64;
|
||||
} else if (np_dtype.is(pybind11::dtype::of<float>())) {
|
||||
return FDDataType::FP32;
|
||||
} else if (np_dtype.is(pybind11::dtype::of<double>())) {
|
||||
return FDDataType::FP64;
|
||||
} else if (np_dtype.is(pybind11::dtype::of<uint8_t>())) {
|
||||
return FDDataType::UINT8;
|
||||
}
|
||||
FDASSERT(false,
|
||||
"NumpyDataTypeToFDDataType() only support "
|
||||
"int32/int64/float32/float64 now.");
|
||||
return FDDataType::FP32;
|
||||
}
|
||||
|
||||
void PyArrayToTensor(pybind11::array& pyarray, FDTensor* tensor,
|
||||
bool share_buffer) {
|
||||
tensor->dtype = NumpyDataTypeToFDDataType(pyarray.dtype());
|
||||
tensor->shape.insert(tensor->shape.begin(), pyarray.shape(),
|
||||
pyarray.shape() + pyarray.ndim());
|
||||
if (share_buffer) {
|
||||
tensor->external_data_ptr = pyarray.mutable_data();
|
||||
} else {
|
||||
tensor->data.resize(pyarray.nbytes());
|
||||
memcpy(tensor->data.data(), pyarray.mutable_data(), pyarray.nbytes());
|
||||
}
|
||||
}
|
||||
|
||||
pybind11::array TensorToPyArray(const FDTensor& tensor) {
|
||||
auto numpy_dtype = FDDataTypeToNumpyDataType(tensor.dtype);
|
||||
auto out = pybind11::array(numpy_dtype, tensor.shape);
|
||||
memcpy(out.mutable_data(), tensor.Data(), tensor.Numel() * FDDataTypeSize(tensor.dtype));
|
||||
return out;
|
||||
}
|
||||
|
||||
#ifdef ENABLE_VISION
|
||||
int NumpyDataTypeToOpenCvType(const pybind11::dtype& np_dtype) {
|
||||
if (np_dtype.is(pybind11::dtype::of<int32_t>())) {
|
||||
return CV_32S;
|
||||
} else if (np_dtype.is(pybind11::dtype::of<int8_t>())) {
|
||||
return CV_8U;
|
||||
} else if (np_dtype.is(pybind11::dtype::of<uint8_t>())) {
|
||||
return CV_8U;
|
||||
} else if (np_dtype.is(pybind11::dtype::of<float>())) {
|
||||
return CV_32F;
|
||||
} else {
|
||||
FDASSERT(
|
||||
false,
|
||||
"NumpyDataTypeToOpenCvType() only support int32/int8/uint8/float32 "
|
||||
"now.");
|
||||
}
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
cv::Mat PyArrayToCvMat(pybind11::array& pyarray) {
|
||||
auto cv_type = NumpyDataTypeToOpenCvType(pyarray.dtype());
|
||||
FDASSERT(
|
||||
pyarray.ndim() == 3,
|
||||
"Require rank of array to be 3 with HWC format while converting it to "
|
||||
"cv::Mat.");
|
||||
int channel = *(pyarray.shape() + 2);
|
||||
int height = *(pyarray.shape());
|
||||
int width = *(pyarray.shape() + 1);
|
||||
return cv::Mat(height, width, CV_MAKETYPE(cv_type, channel),
|
||||
pyarray.mutable_data());
|
||||
}
|
||||
#endif
|
||||
|
||||
PYBIND11_MODULE(fastdeploy_main, m) {
|
||||
m.doc() =
|
||||
"Make programer easier to deploy deeplearning model, save time to save "
|
||||
"the world!";
|
||||
|
||||
BindRuntime(m);
|
||||
BindFDModel(m);
|
||||
#ifdef ENABLE_VISION
|
||||
auto vision_module =
|
||||
m.def_submodule("vision", "Vision module of FastDeploy.");
|
||||
BindVision(vision_module);
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user