Merge branch 'develop' into matting

This commit is contained in:
huangjianhui
2023-02-14 11:41:17 +08:00
committed by GitHub
9 changed files with 204 additions and 7 deletions

View File

@@ -35,6 +35,7 @@ void BindOption(pybind11::module& m) {
.def(pybind11::init()) .def(pybind11::init())
.def("set_model_path", &RuntimeOption::SetModelPath) .def("set_model_path", &RuntimeOption::SetModelPath)
.def("set_model_buffer", &RuntimeOption::SetModelBuffer) .def("set_model_buffer", &RuntimeOption::SetModelBuffer)
.def("set_encryption_key", &RuntimeOption::SetEncryptionKey)
.def("use_gpu", &RuntimeOption::UseGpu) .def("use_gpu", &RuntimeOption::UseGpu)
.def("use_cpu", &RuntimeOption::UseCpu) .def("use_cpu", &RuntimeOption::UseCpu)
.def("use_rknpu2", &RuntimeOption::UseRKNPU2) .def("use_rknpu2", &RuntimeOption::UseRKNPU2)

View File

@@ -104,7 +104,33 @@ bool AutoSelectBackend(RuntimeOption& option) {
bool Runtime::Init(const RuntimeOption& _option) { bool Runtime::Init(const RuntimeOption& _option) {
option = _option; option = _option;
// decrypt encrypted model
if ("" != option.encryption_key_) {
#ifdef ENABLE_ENCRYPTION
if (option.model_from_memory_) {
option.model_file = Decrypt(option.model_file, option.encryption_key_);
if (!(option.params_file.empty())) {
option.params_file =
Decrypt(option.params_file, option.encryption_key_);
}
} else {
std::string model_buffer = "";
FDASSERT(ReadBinaryFromFile(option.model_file, &model_buffer),
"Fail to read binary from model file");
option.model_file = Decrypt(model_buffer, option.encryption_key_);
if (!(option.params_file.empty())) {
std::string params_buffer = "";
FDASSERT(ReadBinaryFromFile(option.params_file, &params_buffer),
"Fail to read binary from parameter file");
option.params_file = Decrypt(params_buffer, option.encryption_key_);
}
option.model_from_memory_ = true;
}
#else
FDERROR << "The FastDeploy didn't compile with encryption function."
<< std::endl;
#endif
}
// Choose default backend by model format and device if backend is not // Choose default backend by model format and device if backend is not
// specified // specified
if (option.backend == Backend::UNKNOWN) { if (option.backend == Backend::UNKNOWN) {

View File

@@ -23,6 +23,9 @@
#include "fastdeploy/core/fd_tensor.h" #include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/runtime/runtime_option.h" #include "fastdeploy/runtime/runtime_option.h"
#include "fastdeploy/utils/perf.h" #include "fastdeploy/utils/perf.h"
#ifdef ENABLE_ENCRYPTION
#include "fastdeploy/encryption/include/decrypt.h"
#endif
/** \brief All C++ FastDeploy APIs are defined inside this namespace /** \brief All C++ FastDeploy APIs are defined inside this namespace
* *

View File

@@ -36,6 +36,15 @@ void RuntimeOption::SetModelBuffer(const std::string& model_buffer,
model_from_memory_ = true; model_from_memory_ = true;
} }
void RuntimeOption::SetEncryptionKey(const std::string& encryption_key) {
#ifdef ENABLE_ENCRYPTION
encryption_key_ = encryption_key;
#else
FDERROR << "The FastDeploy didn't compile with encryption function."
<< std::endl;
#endif
}
void RuntimeOption::UseGpu(int gpu_id) { void RuntimeOption::UseGpu(int gpu_id) {
#ifdef WITH_GPU #ifdef WITH_GPU
device = Device::GPU; device = Device::GPU;

View File

@@ -59,6 +59,12 @@ struct FASTDEPLOY_DECL RuntimeOption {
const std::string& params_buffer = "", const std::string& params_buffer = "",
const ModelFormat& format = ModelFormat::PADDLE); const ModelFormat& format = ModelFormat::PADDLE);
/** \brief When loading encrypted model, encryption_key is required to decrypte model
*
* \param[in] encryption_key The key for decrypting model
*/
void SetEncryptionKey(const std::string& encryption_key);
/// Use cpu to inference, the runtime will inference on CPU by default /// Use cpu to inference, the runtime will inference on CPU by default
void UseCpu(); void UseCpu();
/// Use Nvidia GPU to inference /// Use Nvidia GPU to inference
@@ -178,6 +184,8 @@ struct FASTDEPLOY_DECL RuntimeOption {
/// format of input model /// format of input model
ModelFormat model_format = ModelFormat::PADDLE; ModelFormat model_format = ModelFormat::PADDLE;
std::string encryption_key_ = "";
// for cpu inference // for cpu inference
// default will let the backend choose their own default value // default will let the backend choose their own default value
int cpu_thread_num = -1; int cpu_thread_num = -1;

View File

@@ -187,6 +187,12 @@ class RuntimeOption:
return self._option.set_model_buffer(model_buffer, params_buffer, return self._option.set_model_buffer(model_buffer, params_buffer,
model_format) model_format)
def set_encryption_key(self, encryption_key):
"""When loading encrypted model, encryption_key is required to decrypte model
:param encryption_key: (str)The key for decrypting model
"""
return self._option.set_encryption_key(encryption_key)
def use_gpu(self, device_id=0): def use_gpu(self, device_id=0):
"""Inference with Nvidia GPU """Inference with Nvidia GPU
@@ -583,9 +589,11 @@ class RuntimeOption:
replica_num=1, replica_num=1,
available_memory_proportion=1.0, available_memory_proportion=1.0,
enable_half_partial=False): enable_half_partial=False):
logging.warning("`RuntimeOption.set_ipu_config` will be deprecated in v1.2.0, please use `RuntimeOption.paddle_infer_option.set_ipu_config()` instead.") logging.warning(
self._option.paddle_infer_option.set_ipu_config(enable_fp16, replica_num, "`RuntimeOption.set_ipu_config` will be deprecated in v1.2.0, please use `RuntimeOption.paddle_infer_option.set_ipu_config()` instead."
available_memory_proportion, )
self._option.paddle_infer_option.set_ipu_config(
enable_fp16, replica_num, available_memory_proportion,
enable_half_partial) enable_half_partial)
@property @property
@@ -657,7 +665,8 @@ class RuntimeOption:
continue continue
if hasattr(getattr(self._option, attr), "__call__"): if hasattr(getattr(self._option, attr), "__call__"):
continue continue
message += " {} : {}\t\n".format(attr, getattr(self._option, attr)) message += " {} : {}\t\n".format(attr,
getattr(self._option, attr))
message.strip("\n") message.strip("\n")
message += ")" message += ")"
return message return message

View File

@@ -0,0 +1,46 @@
English | [中文](README_CN.md)
# FastDeploy generates an encrypted model
This directory provides `encrypt.py` to quickly complete the encryption of the model and parameter files of ResNet50_vd
## encryption
```bash
# Download deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/tutorials/encrypt_model
# Download the ResNet50_vd model file
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
python encrypt.py --model_file ResNet50_vd_infer/inference.pdmodel --params_file ResNet50_vd_infer/inference.pdiparams --encrypted_model_dir ResNet50_vd_infer_encrypt
```
>> **Note** After the encryption is completed, the ResNet50_vd_infer_encrypt folder will be generated, including `__model__.encrypted`, `__params__.encrypted`, `encryption_key.txt` three files, where `encryption_key.txt` contains the encrypted key. At the same time, you need to copy the `inference_cls.yaml` configuration file in the original folder to the ResNet50_vd_infer_encrypt folder for subsequent deployment
### Python encryption interface
Use the encrypted interface through the following interface settings
```python
import fastdeploy as fd
import os
# when key is not given, key will be automatically generated.
# otherwise, the file will be encrypted by specific key
encrypted_model, key = fd.encryption.encrypt(model_file.read())
encrypted_params, key= fd.encryption.encrypt(params_file.read(), key)
```
### FastDeploy deployment encryption model (decryption)
Through the setting of the following interface, FastDeploy can deploy the encryption model
```python
import fastdeploy as fd
option = fd.RuntimeOption()
option.set_encryption_key(key)
```
```C++
fastdeploy::RuntimeOption option;
option.SetEncryptionKey(key)
```
>> **Note** For more details about RuntimeOption, please refer to [RuntimeOption Python Documentation](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/runtime_option.html), [ RuntimeOption C++ Documentation](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/structfastdeploy_1_1RuntimeOption.html)

View File

@@ -0,0 +1,48 @@
[English](README.md) | 中文
# 使用FastDeploy生成加密模型
本目录下提供`encrypt.py`快速完成ResNet50_vd的模型和参数文件加密
FastDeploy支持对称加密的方案通过调用OpenSSL中的对称加密算法AES对模型进行加密并产生密钥
## 加密
```bash
#下载加密示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/tutorials/encrypt_model
# 下载ResNet50_vd模型文件
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
python encrypt.py --model_file ResNet50_vd_infer/inference.pdmodel --params_file ResNet50_vd_infer/inference.pdiparams --encrypted_model_dir ResNet50_vd_infer_encrypt
```
>> **注意** 加密完成后会生成ResNet50_vd_infer_encrypt文件夹包含`__model__.encrypted`,`__params__.encrypted`,`encryption_key.txt`三个文件,其中`encryption_key.txt`包含加密后的秘钥,同时需要将原文件夹中的、`inference_cls.yaml`配置文件 拷贝至ResNet50_vd_infer_encrypt文件夹以便后续部署使用
### Python加密接口
通过如下接口的设定,使用加密接口(解密)
```python
import fastdeploy as fd
import os
# when key is not given, key will be automatically generated.
# otherwise, the file will be encrypted by specific key
encrypted_model, key = fd.encryption.encrypt(model_file.read())
encrypted_params, key= fd.encryption.encrypt(params_file.read(), key)
```
### FastDeploy 部署加密模型
通过如下接口的设定,完成加密模型的推理
```python
import fastdeploy as fd
option = fd.RuntimeOption()
option.set_encryption_key(key)
```
```C++
fastdeploy::RuntimeOption option;
option.SetEncryptionKey(key)
```
>> **注意** RuntimeOption的更多详细信息请参考[RuntimeOption Python文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/runtime_option.html)[RuntimeOption C++文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/structfastdeploy_1_1RuntimeOption.html)

View File

@@ -0,0 +1,47 @@
import fastdeploy as fd
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--encrypted_model_dir",
required=False,
help="Path of model directory.")
parser.add_argument(
"--model_file", required=True, help="Path of model file directory.")
parser.add_argument(
"--params_file",
required=True,
help="Path of parameters file directory.")
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
model_buffer = open(args.model_file, 'rb')
params_buffer = open(args.params_file, 'rb')
encrypted_model, key = fd.encryption.encrypt(model_buffer.read())
# use the same key to encrypt parameter file
encrypted_params, key = fd.encryption.encrypt(params_buffer.read(), key)
encrypted_model_dir = "encrypt_model_dir"
if args.encrypted_model_dir:
encrypted_model_dir = args.encrypted_model_dir
model_buffer.close()
params_buffer.close()
os.mkdir(encrypted_model_dir)
with open(os.path.join(encrypted_model_dir, "__model__.encrypted"),
"w") as f:
f.write(encrypted_model)
with open(os.path.join(encrypted_model_dir, "__params__.encrypted"),
"w") as f:
f.write(encrypted_params)
with open(os.path.join(encrypted_model_dir, "encryption_key.txt"),
"w") as f:
f.write(key)
print("encryption key: ", key)
print("encryption success")