Remove Paddle Reader (#1813)

* Remove Paddle Reader

* support pp-infer c++14

* disable trt cache

---------

Co-authored-by: wang-xinyu <wangxinyu_es@163.com>
This commit is contained in:
Jason
2023-04-20 21:12:43 +08:00
committed by GitHub
parent 5e2ff374ce
commit f3d44785c4
7 changed files with 59 additions and 24 deletions

View File

@@ -36,7 +36,7 @@ include(${PROJECT_SOURCE_DIR}/cmake/utils.cmake)
# Set C++11 as standard for the whole project
if(NOT MSVC)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_FLAGS "-Wno-format -g0 -O3")
if(NEED_ABI0)
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)

View File

@@ -43,6 +43,7 @@ if(PADDLEINFERENCE_DIRECTORY)
endif()
include_directories(${PADDLEINFERENCE_INC_DIR})
include_directories(${PADDLEINFERENCE_DIRECTORY})
if(WIN32)
set(PADDLEINFERENCE_COMPILE_LIB
"${PADDLEINFERENCE_INSTALL_DIR}/paddle/lib/paddle_inference.lib"

View File

@@ -58,6 +58,8 @@ struct PaddleBackendOption {
bool enable_memory_optimize = true;
/// Whether enable ir debug, default false
bool switch_ir_debug = false;
/// Whether the load model is quantized model
bool is_quantize_model = false;
/*
* @brief IPU option, this will configure the IPU hardware, if inference model in IPU

View File

@@ -51,6 +51,8 @@ void BindPaddleOption(pybind11::module& m) {
&PaddleBackendOption::mkldnn_cache_size)
.def_readwrite("gpu_mem_init_size",
&PaddleBackendOption::gpu_mem_init_size)
.def_readwrite("is_quantize_model",
&PaddleBackendOption::is_quantize_model)
.def("disable_trt_ops", &PaddleBackendOption::DisableTrtOps)
.def("delete_pass", &PaddleBackendOption::DeletePass)
.def("set_ipu_config", &PaddleBackendOption::SetIpuConfig);

View File

@@ -148,11 +148,9 @@ bool PaddleBackend::InitFromPaddle(const std::string& model,
FDASSERT(ReadBinaryFromFile(model, &model_content),
"Failed to read file %s.", model.c_str());
}
auto reader =
paddle2onnx::PaddleReader(model_content.c_str(), model_content.size());
// If it's a quantized model, and use cpu with mkldnn, automaticaly switch to
// int8 mode
if (reader.is_quantize_model) {
if (option.is_quantize_model) {
if (option.device == Device::GPU) {
FDWARNING << "The loaded model is a quantized model, while inference on "
"GPU, please use TensorRT backend to get better performance."
@@ -184,25 +182,25 @@ bool PaddleBackend::InitFromPaddle(const std::string& model,
}
}
inputs_desc_.resize(reader.num_inputs);
for (int i = 0; i < reader.num_inputs; ++i) {
std::string name(reader.inputs[i].name);
std::vector<int64_t> shape(reader.inputs[i].shape,
reader.inputs[i].shape + reader.inputs[i].rank);
inputs_desc_[i].name = name;
inputs_desc_[i].shape.assign(shape.begin(), shape.end());
inputs_desc_[i].dtype = ReaderDataTypeToFD(reader.inputs[i].dtype);
}
outputs_desc_.resize(reader.num_outputs);
for (int i = 0; i < reader.num_outputs; ++i) {
std::string name(reader.outputs[i].name);
std::vector<int64_t> shape(
reader.outputs[i].shape,
reader.outputs[i].shape + reader.outputs[i].rank);
outputs_desc_[i].name = name;
outputs_desc_[i].shape.assign(shape.begin(), shape.end());
outputs_desc_[i].dtype = ReaderDataTypeToFD(reader.outputs[i].dtype);
}
// inputs_desc_.resize(reader.num_inputs);
// for (int i = 0; i < reader.num_inputs; ++i) {
// std::string name(reader.inputs[i].name);
// std::vector<int64_t> shape(reader.inputs[i].shape,
// reader.inputs[i].shape + reader.inputs[i].rank);
// inputs_desc_[i].name = name;
// inputs_desc_[i].shape.assign(shape.begin(), shape.end());
// inputs_desc_[i].dtype = ReaderDataTypeToFD(reader.inputs[i].dtype);
// }
// outputs_desc_.resize(reader.num_outputs);
// for (int i = 0; i < reader.num_outputs; ++i) {
// std::string name(reader.outputs[i].name);
// std::vector<int64_t> shape(
// reader.outputs[i].shape,
// reader.outputs[i].shape + reader.outputs[i].rank);
// outputs_desc_[i].name = name;
// outputs_desc_[i].shape.assign(shape.begin(), shape.end());
// outputs_desc_[i].dtype = ReaderDataTypeToFD(reader.outputs[i].dtype);
// }
if (option.collect_trt_shape) {
// Set the shape info file.
std::string curr_model_dir = "./";
@@ -253,6 +251,35 @@ bool PaddleBackend::InitFromPaddle(const std::string& model,
}
}
predictor_ = paddle_infer::CreatePredictor(config_);
auto input_names = predictor_->GetInputNames();
auto output_names = predictor_->GetOutputNames();
auto input_dtypes = predictor_->GetInputTypes();
auto output_dtypes = predictor_->GetOutputTypes();
auto input_shapes = predictor_->GetInputTensorShape();
auto output_shapes = predictor_->GetOutputTensorShape();
inputs_desc_.resize(input_names.size());
for (int i = 0; i < input_names.size(); ++i) {
inputs_desc_[i].name = input_names[i];
auto iter = input_shapes.find(inputs_desc_[i].name);
FDASSERT(iter != input_shapes.end(), "Cannot find shape for input %s.", inputs_desc_[i].name.c_str());
inputs_desc_[i].shape.assign(iter->second.begin(), iter->second.end());
auto iter1 = input_dtypes.find(inputs_desc_[i].name);
FDASSERT(iter1 != input_dtypes.end(), "Cannot find data type for input %s.", inputs_desc_[i].name.c_str());
inputs_desc_[i].dtype = PaddleDataTypeToFD(iter1->second);
}
outputs_desc_.resize(output_names.size());
for (int i = 0; i < output_names.size(); ++i) {
outputs_desc_[i].name = output_names[i];
auto iter = output_shapes.find(outputs_desc_[i].name);
FDASSERT(iter != output_shapes.end(), "Cannot find shape for output %s.", outputs_desc_[i].name.c_str());
outputs_desc_[i].shape.assign(iter->second.begin(), iter->second.end());
auto iter1 = output_dtypes.find(outputs_desc_[i].name);
FDASSERT(iter1 != output_dtypes.end(), "Cannot find data type for output %s.", outputs_desc_[i].name.c_str());
outputs_desc_[i].dtype = PaddleDataTypeToFD(iter1->second);
}
initialized_ = true;
return true;
}

View File

@@ -26,6 +26,7 @@ def process_paddle_inference(paddle_inference_so_file):
rpaths = [
"$ORIGIN", "$ORIGIN/../../third_party/install/mkldnn/lib/",
"$ORIGIN/../../third_party/install/mklml/lib/",
"$ORIGIN/../../third_party/install/fdmodel/lib/",
"$ORIGIN/../../../tensorrt/lib/"
]

View File

@@ -314,7 +314,9 @@ ModelState::ModelState(TRITONBACKEND_Model* triton_model)
// value_string,
// &runtime_options_->trt_max_workspace_size));
} else if (param_key == "cache_file") {
runtime_options_->trt_option.serialize_file = value_string;
LOG_MESSAGE(TRITONSERVER_LOG_INFO,
"Skipping setting TRT cache file.");
// runtime_options_->trt_option.serialize_file = value_string;
} else if (param_key == "use_paddle") {
runtime_options_->EnablePaddleToTrt();
} else if (param_key == "use_paddle_log") {