mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
[Docs] Pick PPOCR fastdeploy docs from PaddleOCR (#1534)
* Pick PPOCR fastdeploy docs from PaddleOCR * improve ppocr * improve readme * remove old PP-OCRv2 and PP-OCRv3 folfers * rename kunlun to kunlunxin * improve readme * improve readme * improve readme --------- Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
82
examples/vision/ocr/PP-OCR/cpu-gpu/python/infer_det.py
Executable file
82
examples/vision/ocr/PP-OCR/cpu-gpu/python/infer_det.py
Executable file
@@ -0,0 +1,82 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--det_model", required=True, help="Path of Detection model of PPOCR.")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--device_id",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Define which GPU card used to run model.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
|
||||
det_option = fd.RuntimeOption()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
det_option.use_gpu(args.device_id)
|
||||
|
||||
return det_option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
|
||||
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
|
||||
|
||||
# Set the runtime option
|
||||
det_option = build_option(args)
|
||||
|
||||
# Create the det_model
|
||||
det_model = fd.vision.ocr.DBDetector(
|
||||
det_model_file, det_params_file, runtime_option=det_option)
|
||||
|
||||
# Set the preporcessing parameters
|
||||
det_model.preprocessor.max_side_len = 960
|
||||
det_model.postprocessor.det_db_thresh = 0.3
|
||||
det_model.postprocessor.det_db_box_thresh = 0.6
|
||||
det_model.postprocessor.det_db_unclip_ratio = 1.5
|
||||
det_model.postprocessor.det_db_score_mode = "slow"
|
||||
det_model.postprocessor.use_dilation = False
|
||||
|
||||
# Read the image
|
||||
im = cv2.imread(args.image)
|
||||
|
||||
# Predict and return the results
|
||||
result = det_model.predict(im)
|
||||
|
||||
print(result)
|
||||
|
||||
# Visualize the results
|
||||
vis_im = fd.vision.vis_ppocr(im, result)
|
||||
cv2.imwrite("visualized_result.jpg", vis_im)
|
||||
print("Visualized result save in ./visualized_result.jpg")
|
Reference in New Issue
Block a user