mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Add tts python example and change onnx to paddle (#420)
* add tts example * update example * update use fd engine * add tts python example * add readme * fix comment * change paddle model * fix readme style Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
214
examples/audio/pp-tts/python/stream_play_tts.py
Normal file
214
examples/audio/pp-tts/python/stream_play_tts.py
Normal file
@@ -0,0 +1,214 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
import os
|
||||
import time
|
||||
|
||||
import fastdeploy as fd
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
|
||||
from paddlespeech.server.utils.util import denorm
|
||||
from paddlespeech.server.utils.util import get_chunks
|
||||
from paddlespeech.t2s.frontend.zh_frontend import Frontend
|
||||
|
||||
model_name_fastspeech2 = "fastspeech2_cnndecoder_csmsc_streaming_static_1.0.0"
|
||||
model_zip_fastspeech2 = model_name_fastspeech2 + ".zip"
|
||||
model_url_fastspeech2 = "https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/" + model_zip_fastspeech2
|
||||
model_name_mb_melgan = "mb_melgan_csmsc_static_0.1.1"
|
||||
model_zip_mb_melgan = model_name_mb_melgan + ".zip"
|
||||
model_url_mb_melgan = "https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/" + model_zip_mb_melgan
|
||||
|
||||
dir_name = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||||
|
||||
if not os.path.exists(model_name_fastspeech2):
|
||||
if os.path.exists(model_zip_fastspeech2):
|
||||
os.remove(model_zip_fastspeech2)
|
||||
fd.download_and_decompress(model_url_fastspeech2, path=dir_name)
|
||||
os.remove(model_zip_fastspeech2)
|
||||
if not os.path.exists(model_name_mb_melgan):
|
||||
if os.path.exists(model_zip_mb_melgan):
|
||||
os.remove(model_zip_mb_melgan)
|
||||
fd.download_and_decompress(model_url_mb_melgan, path=dir_name)
|
||||
os.remove(model_zip_mb_melgan)
|
||||
|
||||
voc_block = 36
|
||||
voc_pad = 14
|
||||
am_block = 72
|
||||
am_pad = 12
|
||||
voc_upsample = 300
|
||||
|
||||
# 模型路径
|
||||
|
||||
phones_dict = dir_name + model_name_fastspeech2 + "/phone_id_map.txt"
|
||||
am_stat_path = dir_name + model_name_fastspeech2 + "/speech_stats.npy"
|
||||
|
||||
am_encoder_model = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_encoder_infer.pdmodel"
|
||||
am_decoder_model = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_decoder.pdmodel"
|
||||
am_postnet_model = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_postnet.pdmodel"
|
||||
voc_melgan_model = dir_name + model_name_mb_melgan + "/mb_melgan_csmsc.pdmodel"
|
||||
|
||||
am_encoder_para = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_encoder_infer.pdiparams"
|
||||
am_decoder_para = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_decoder.pdiparams"
|
||||
am_postnet_para = dir_name + model_name_fastspeech2 + "/fastspeech2_csmsc_am_postnet.pdiparams"
|
||||
voc_melgan_para = dir_name + model_name_mb_melgan + "/mb_melgan_csmsc.pdiparams"
|
||||
|
||||
frontend = Frontend(phone_vocab_path=phones_dict, tone_vocab_path=None)
|
||||
am_mu, am_std = np.load(am_stat_path)
|
||||
|
||||
option_1 = fd.RuntimeOption()
|
||||
option_1.set_model_path(am_encoder_model, am_encoder_para)
|
||||
option_1.use_cpu()
|
||||
option_1.use_ort_backend()
|
||||
option_1.set_cpu_thread_num(12)
|
||||
am_encoder_runtime = fd.Runtime(option_1)
|
||||
|
||||
option_2 = fd.RuntimeOption()
|
||||
option_2.set_model_path(am_decoder_model, am_decoder_para)
|
||||
option_2.use_cpu()
|
||||
option_2.use_ort_backend()
|
||||
option_2.set_cpu_thread_num(12)
|
||||
am_decoder_runtime = fd.Runtime(option_2)
|
||||
|
||||
option_3 = fd.RuntimeOption()
|
||||
option_3.set_model_path(am_postnet_model, am_postnet_para)
|
||||
option_3.use_cpu()
|
||||
option_3.use_ort_backend()
|
||||
option_3.set_cpu_thread_num(12)
|
||||
am_postnet_runtime = fd.Runtime(option_3)
|
||||
|
||||
option_4 = fd.RuntimeOption()
|
||||
option_4.set_model_path(voc_melgan_model, voc_melgan_para)
|
||||
option_4.use_cpu()
|
||||
option_4.use_ort_backend()
|
||||
option_4.set_cpu_thread_num(12)
|
||||
voc_melgan_runtime = fd.Runtime(option_4)
|
||||
|
||||
|
||||
def depadding(data, chunk_num, chunk_id, block, pad, upsample):
|
||||
"""
|
||||
Streaming inference removes the result of pad inference
|
||||
"""
|
||||
front_pad = min(chunk_id * block, pad)
|
||||
# first chunk
|
||||
if chunk_id == 0:
|
||||
data = data[:block * upsample]
|
||||
# last chunk
|
||||
elif chunk_id == chunk_num - 1:
|
||||
data = data[front_pad * upsample:]
|
||||
# middle chunk
|
||||
else:
|
||||
data = data[front_pad * upsample:(front_pad + block) * upsample]
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def inference_stream(text):
|
||||
input_ids = frontend.get_input_ids(
|
||||
text, merge_sentences=False, get_tone_ids=False)
|
||||
phone_ids = input_ids["phone_ids"]
|
||||
for i in range(len(phone_ids)):
|
||||
part_phone_ids = phone_ids[i].numpy()
|
||||
voc_chunk_id = 0
|
||||
orig_hs = am_encoder_runtime.infer({
|
||||
'text':
|
||||
part_phone_ids.astype("int64")
|
||||
})
|
||||
orig_hs = orig_hs[0]
|
||||
|
||||
# streaming voc chunk info
|
||||
mel_len = orig_hs.shape[1]
|
||||
voc_chunk_num = math.ceil(mel_len / voc_block)
|
||||
start = 0
|
||||
end = min(voc_block + voc_pad, mel_len)
|
||||
|
||||
# streaming am
|
||||
hss = get_chunks(orig_hs, am_block, am_pad, "am")
|
||||
am_chunk_num = len(hss)
|
||||
for i, hs in enumerate(hss):
|
||||
am_decoder_output = am_decoder_runtime.infer({
|
||||
'xs':
|
||||
hs.astype("float32")
|
||||
})
|
||||
|
||||
am_postnet_output = am_postnet_runtime.infer({
|
||||
'xs':
|
||||
np.transpose(am_decoder_output[0], (0, 2, 1))
|
||||
})
|
||||
am_output_data = am_decoder_output + np.transpose(
|
||||
am_postnet_output[0], (0, 2, 1))
|
||||
normalized_mel = am_output_data[0][0]
|
||||
|
||||
sub_mel = denorm(normalized_mel, am_mu, am_std)
|
||||
sub_mel = depadding(sub_mel, am_chunk_num, i, am_block, am_pad, 1)
|
||||
|
||||
if i == 0:
|
||||
mel_streaming = sub_mel
|
||||
else:
|
||||
mel_streaming = np.concatenate((mel_streaming, sub_mel), axis=0)
|
||||
|
||||
# streaming voc
|
||||
# 当流式AM推理的mel帧数大于流式voc推理的chunk size,开始进行流式voc 推理
|
||||
while (mel_streaming.shape[0] >= end and
|
||||
voc_chunk_id < voc_chunk_num):
|
||||
voc_chunk = mel_streaming[start:end, :]
|
||||
|
||||
sub_wav = voc_melgan_runtime.infer({
|
||||
'logmel':
|
||||
voc_chunk.astype("float32")
|
||||
})
|
||||
sub_wav = depadding(sub_wav[0], voc_chunk_num, voc_chunk_id,
|
||||
voc_block, voc_pad, voc_upsample)
|
||||
|
||||
yield sub_wav
|
||||
|
||||
voc_chunk_id += 1
|
||||
start = max(0, voc_chunk_id * voc_block - voc_pad)
|
||||
end = min((voc_chunk_id + 1) * voc_block + voc_pad, mel_len)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
text = "欢迎使用飞桨语音合成系统,测试一下合成效果。"
|
||||
# warm up
|
||||
# onnxruntime 第一次时间会长一些,建议先 warmup 一下
|
||||
'''
|
||||
# pyaudio 播放
|
||||
p = pyaudio.PyAudio()
|
||||
stream = p.open(
|
||||
format=p.get_format_from_width(2), # int16
|
||||
channels=1,
|
||||
rate=24000,
|
||||
output=True)
|
||||
'''
|
||||
# 计时
|
||||
wavs = []
|
||||
t1 = time.time()
|
||||
for sub_wav in inference_stream(text):
|
||||
print("响应时间:", time.time() - t1)
|
||||
t1 = time.time()
|
||||
wavs.append(sub_wav.flatten())
|
||||
# float32 to int16
|
||||
#wav = float2pcm(sub_wav)
|
||||
# to bytes
|
||||
#wav_bytes = wav.tobytes()
|
||||
#stream.write(wav_bytes)
|
||||
|
||||
# 关闭 pyaudio 播放器
|
||||
#stream.stop_stream()
|
||||
#stream.close()
|
||||
#p.terminate()
|
||||
|
||||
# 流式合成的结果导出
|
||||
wav = np.concatenate(wavs)
|
||||
sf.write("demo_stream.wav", data=wav, samplerate=24000)
|
Reference in New Issue
Block a user