mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
[XPU] Support kvblock centralized management (#3017)
This commit is contained in:
68
custom_ops/xpu_ops/src/ops/recover_decode_task.cc
Normal file
68
custom_ops/xpu_ops/src/ops/recover_decode_task.cc
Normal file
@@ -0,0 +1,68 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <paddle/phi/backends/xpu/xpu_context.h>
|
||||
#include "paddle/extension.h"
|
||||
#include "paddle/phi/core/enforce.h"
|
||||
#include "xpu/plugin.h"
|
||||
|
||||
void RecoverDecodeTask(const paddle::Tensor &stop_flags,
|
||||
const paddle::Tensor &seq_lens_this_time,
|
||||
const paddle::Tensor &seq_lens_encoder,
|
||||
const paddle::Tensor &seq_lens_decoder,
|
||||
const paddle::Tensor &step_seq_lens_decoder,
|
||||
const paddle::Tensor &block_tables,
|
||||
const paddle::Tensor &is_block_step,
|
||||
const int block_size) {
|
||||
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
|
||||
auto dev_ctx =
|
||||
paddle::experimental::DeviceContextPool::Instance().Get(place);
|
||||
auto xpu_ctx = static_cast<const phi::XPUContext *>(dev_ctx);
|
||||
const int bsz = seq_lens_this_time.shape()[0];
|
||||
const int block_num_per_seq = block_tables.shape()[1];
|
||||
int r = baidu::xpu::api::plugin::recover_decode_task(
|
||||
xpu_ctx->x_context(),
|
||||
const_cast<bool *>(stop_flags.data<bool>()),
|
||||
const_cast<int *>(seq_lens_this_time.data<int>()),
|
||||
const_cast<int *>(seq_lens_encoder.data<int>()),
|
||||
const_cast<int *>(seq_lens_decoder.data<int>()),
|
||||
const_cast<int *>(step_seq_lens_decoder.data<int>()),
|
||||
const_cast<int *>(block_tables.data<int>()),
|
||||
const_cast<bool *>(is_block_step.data<bool>()),
|
||||
bsz,
|
||||
block_num_per_seq,
|
||||
block_size);
|
||||
PD_CHECK(r == 0, "baidu::xpu::api::plugin::recover_decode_task failed.");
|
||||
}
|
||||
|
||||
PD_BUILD_OP(recover_decode_task)
|
||||
.Inputs({"stop_flags",
|
||||
"seq_lens_this_time",
|
||||
"seq_lens_encoder",
|
||||
"seq_lens_decoder",
|
||||
"step_seq_lens_decoder",
|
||||
"block_tables",
|
||||
"is_block_step"})
|
||||
.Attrs({"block_size: int"})
|
||||
.Outputs({"seq_lens_this_time_out",
|
||||
"seq_lens_encoder_out",
|
||||
"seq_lens_decoder_out",
|
||||
"stop_flags_out",
|
||||
"is_block_step_out"})
|
||||
.SetInplaceMap({{"seq_lens_this_time", "seq_lens_this_time_out"},
|
||||
{"seq_lens_encoder", "seq_lens_encoder_out"},
|
||||
{"seq_lens_decoder", "seq_lens_decoder_out"},
|
||||
{"stop_flags", "stop_flags_out"},
|
||||
{"is_block_step", "is_block_step_out"}})
|
||||
.SetKernelFn(PD_KERNEL(RecoverDecodeTask));
|
105
custom_ops/xpu_ops/src/ops/update_inputs_v1.cc
Normal file
105
custom_ops/xpu_ops/src/ops/update_inputs_v1.cc
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <paddle/phi/backends/xpu/xpu_context.h>
|
||||
#include "paddle/extension.h"
|
||||
#include "paddle/phi/core/enforce.h"
|
||||
#include "xpu/plugin.h"
|
||||
|
||||
void UpdateInputesV1(const paddle::Tensor &stop_flags,
|
||||
const paddle::Tensor ¬_need_stop, // only on cpu
|
||||
const paddle::Tensor &seq_lens_this_time,
|
||||
const paddle::Tensor &seq_lens_encoder,
|
||||
const paddle::Tensor &seq_lens_decoder,
|
||||
const paddle::Tensor &step_seq_lens_decoder,
|
||||
const paddle::Tensor &prompt_lens,
|
||||
const paddle::Tensor &topk_ids,
|
||||
const paddle::Tensor &input_ids,
|
||||
const paddle::Tensor &block_tables,
|
||||
const paddle::Tensor &stop_nums,
|
||||
const paddle::Tensor &next_tokens,
|
||||
const paddle::Tensor &is_block_step,
|
||||
const int block_size) {
|
||||
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
|
||||
auto dev_ctx =
|
||||
paddle::experimental::DeviceContextPool::Instance().Get(place);
|
||||
auto xpu_ctx = static_cast<const phi::XPUContext *>(dev_ctx);
|
||||
|
||||
const int max_bsz = stop_flags.shape()[0];
|
||||
const int now_bsz = seq_lens_this_time.shape()[0];
|
||||
// std::cout << "now_bsz: " << now_bsz << std::endl;
|
||||
const int input_ids_stride = input_ids.shape()[1];
|
||||
const int block_num_per_seq = block_tables.shape()[1];
|
||||
auto not_need_stop_gpu = not_need_stop.copy_to(stop_flags.place(), false);
|
||||
int r = baidu::xpu::api::plugin::update_inputs_v1(
|
||||
xpu_ctx->x_context(),
|
||||
const_cast<bool *>(not_need_stop_gpu.data<bool>()),
|
||||
const_cast<int *>(seq_lens_this_time.data<int>()),
|
||||
const_cast<int *>(seq_lens_encoder.data<int>()),
|
||||
const_cast<int *>(seq_lens_decoder.data<int>()),
|
||||
const_cast<int *>(step_seq_lens_decoder.data<int>()),
|
||||
const_cast<int64_t *>(prompt_lens.data<int64_t>()),
|
||||
const_cast<int64_t *>(topk_ids.data<int64_t>()),
|
||||
const_cast<int64_t *>(input_ids.data<int64_t>()),
|
||||
const_cast<int *>(block_tables.data<int>()),
|
||||
stop_nums.data<int64_t>(),
|
||||
const_cast<bool *>(stop_flags.data<bool>()),
|
||||
const_cast<bool *>(is_block_step.data<bool>()),
|
||||
next_tokens.data<int64_t>(),
|
||||
now_bsz,
|
||||
max_bsz,
|
||||
input_ids_stride,
|
||||
block_num_per_seq,
|
||||
block_size);
|
||||
PD_CHECK(r == 0, "baidu::xpu::api::plugin::update_inputs_kernel_v1 failed.");
|
||||
auto not_need_stop_cpu =
|
||||
not_need_stop_gpu.copy_to(not_need_stop.place(), false);
|
||||
bool *not_need_stop_data = const_cast<bool *>(not_need_stop.data<bool>());
|
||||
not_need_stop_data[0] = not_need_stop_cpu.data<bool>()[0];
|
||||
}
|
||||
|
||||
PD_BUILD_OP(update_inputs_v1)
|
||||
.Inputs({"stop_flags",
|
||||
"not_need_stop",
|
||||
"seq_lens_this_time",
|
||||
"seq_lens_encoder",
|
||||
"seq_lens_decoder",
|
||||
"step_seq_lens_decoder",
|
||||
"prompt_lens",
|
||||
"topk_ids",
|
||||
"input_ids",
|
||||
"block_tables",
|
||||
"stop_nums",
|
||||
"next_tokens",
|
||||
"is_block_step"})
|
||||
.Attrs({"block_size: int"})
|
||||
.Outputs({"not_need_stop_out",
|
||||
"seq_lens_this_time_out",
|
||||
"seq_lens_encoder_out",
|
||||
"seq_lens_decoder_out",
|
||||
"step_seq_lens_decoder_out",
|
||||
"topk_ids_out",
|
||||
"input_ids_out",
|
||||
"stop_flags_out",
|
||||
"is_block_step_out"})
|
||||
.SetInplaceMap({{"not_need_stop", "not_need_stop_out"},
|
||||
{"seq_lens_this_time", "seq_lens_this_time_out"},
|
||||
{"seq_lens_encoder", "seq_lens_encoder_out"},
|
||||
{"seq_lens_decoder", "seq_lens_decoder_out"},
|
||||
{"topk_ids", "topk_ids_out"},
|
||||
{"input_ids", "input_ids_out"},
|
||||
{"stop_flags", "stop_flags_out"},
|
||||
{"step_seq_lens_decoder", "step_seq_lens_decoder_out"},
|
||||
{"is_block_step", "is_block_step_out"}})
|
||||
.SetKernelFn(PD_KERNEL(UpdateInputesV1));
|
@@ -86,6 +86,39 @@ recover_block(Context *ctx,
|
||||
const int block_num_per_seq, const int length,
|
||||
const int pre_id_length);
|
||||
|
||||
|
||||
DLL_EXPORT int
|
||||
recover_decode_task(Context *ctx, bool *stop_flags,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int *block_tables,
|
||||
bool *is_block_step,
|
||||
const int bsz,
|
||||
const int block_num_per_seq,
|
||||
const int block_size);
|
||||
|
||||
DLL_EXPORT int
|
||||
update_inputs_v1(Context *ctx, bool *not_need_stop,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int64_t *prompt_lens,
|
||||
int64_t *topk_ids,
|
||||
int64_t *input_ids,
|
||||
int *block_tables,
|
||||
const int64_t *stop_nums,
|
||||
bool *stop_flags,
|
||||
bool *is_block_step,
|
||||
const int64_t *next_tokens,
|
||||
const int bsz,
|
||||
const int max_bsz,
|
||||
const int input_ids_stride,
|
||||
const int block_num_per_seq,
|
||||
const int block_size);
|
||||
|
||||
template <typename TX, typename TY>
|
||||
DLL_EXPORT int
|
||||
eb_adjust_batch(Context *ctx, const TX *x, TY *y,
|
||||
|
@@ -0,0 +1,41 @@
|
||||
#include "xpu/kernel/cluster.h"
|
||||
#include "xpu/kernel/cluster_partition.h"
|
||||
#include "xpu/kernel/cluster_primitive.h"
|
||||
|
||||
namespace xpu3 {
|
||||
namespace plugin {
|
||||
|
||||
__global__ void recover_decode_task(bool *stop_flags,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int *block_tables,
|
||||
bool *is_block_step,
|
||||
const int bsz,
|
||||
const int block_num_per_seq,
|
||||
const int block_size) {
|
||||
int cid = core_id();
|
||||
int ncores = core_num();
|
||||
int clusterid = cluster_id();
|
||||
int nclusters = cluster_num();
|
||||
int thread_idx = clusterid * ncores + cid;
|
||||
int nthreads = nclusters * ncores;
|
||||
// if (clusterid != 0) return;
|
||||
for (; thread_idx < bsz; thread_idx += nthreads) {
|
||||
if(is_block_step[thread_idx] == true) {
|
||||
// int *block_table_now = block_tables + thread_idx * block_num_per_seq;
|
||||
if (block_tables[thread_idx * block_num_per_seq + step_seq_lens_decoder[thread_idx] / block_size] != -1) {
|
||||
// can be recovered for decoding
|
||||
is_block_step[thread_idx] = false;
|
||||
seq_lens_this_time[thread_idx]= 1;
|
||||
stop_flags[thread_idx] = false;
|
||||
seq_lens_encoder[thread_idx] = 0;
|
||||
seq_lens_decoder[thread_idx] = step_seq_lens_decoder[thread_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace plugin
|
||||
} // namespace xpu3
|
@@ -0,0 +1,131 @@
|
||||
#include "xpu/kernel/cluster.h"
|
||||
#include "xpu/kernel/cluster_partition.h"
|
||||
#include "xpu/kernel/cluster_primitive.h"
|
||||
// #include <stdio.h>
|
||||
// using namespace std;
|
||||
|
||||
#include "xpu/kernel/xtdk_io.h"
|
||||
#include "xpu/kernel/xtdk.h"
|
||||
|
||||
namespace xpu3 {
|
||||
namespace plugin {
|
||||
|
||||
__global__ void update_inputs_v1(bool *not_need_stop,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int64_t *prompt_lens,
|
||||
int64_t *topk_ids,
|
||||
int64_t *input_ids,
|
||||
int *block_tables,
|
||||
const int64_t *stop_nums,
|
||||
bool *stop_flags,
|
||||
bool *is_block_step,
|
||||
const int64_t *next_tokens,
|
||||
const int bsz,
|
||||
const int max_bsz,
|
||||
const int input_ids_stride,
|
||||
const int block_num_per_seq,
|
||||
const int block_size) {
|
||||
|
||||
|
||||
// std::cout << "seq_lens_this_time " << seq_lens_this_time[0] << std::endl;
|
||||
int cid = core_id();
|
||||
int ncores = core_num();
|
||||
int clusterid = cluster_id();
|
||||
int nclusters = cluster_num();
|
||||
int thread_idx = clusterid * ncores + cid;
|
||||
if (clusterid != 0) return;
|
||||
|
||||
const int max_bs = 1024;
|
||||
__shared__ bool stop_flags_sm[max_bs];
|
||||
__shared__ int stop_flags_int_sm[max_bs];
|
||||
if(cid == 0){
|
||||
GM2SM(stop_flags, stop_flags_sm, sizeof(bool) * bsz);
|
||||
}
|
||||
sync_all();
|
||||
|
||||
for(int i = cid; i < bsz; i+= ncores){
|
||||
if(i < bsz){
|
||||
stop_flags_sm[i] = stop_flags[i];
|
||||
stop_flags_int_sm[i] = static_cast<int64_t>(stop_flags_sm[i]);
|
||||
}else{
|
||||
stop_flags_sm[i] = true;
|
||||
stop_flags_int_sm[i] = 1;
|
||||
}
|
||||
if(i<bsz){
|
||||
int seq_len_this_time_update = 0;
|
||||
int seq_len_decoder_update = 0;
|
||||
int seq_lens_encoder_update = 0;
|
||||
if(stop_flags_sm[i]){
|
||||
LM2GM(&seq_len_this_time_update, seq_lens_this_time + i, sizeof(int));
|
||||
LM2GM(&seq_len_decoder_update, seq_lens_decoder + i, sizeof(int));
|
||||
LM2GM(&seq_lens_encoder_update, seq_lens_encoder + i, sizeof(int));
|
||||
}else{
|
||||
GM2LM(seq_lens_this_time+i, &seq_len_this_time_update, sizeof(int));
|
||||
GM2LM(seq_lens_decoder+i, &seq_len_decoder_update, sizeof(int));
|
||||
GM2LM(seq_lens_encoder+i, &seq_lens_encoder_update, sizeof(int));
|
||||
int sum_of_seq_lens_this_time_and_seq_lens_decoder = seq_len_this_time_update + seq_len_decoder_update;
|
||||
int prompt_lens_update = 0;
|
||||
GM2LM(prompt_lens+i, &prompt_lens_update, sizeof(int64_t));
|
||||
// decoding
|
||||
if(sum_of_seq_lens_this_time_and_seq_lens_decoder >= prompt_lens_update){
|
||||
seq_len_decoder_update = seq_len_this_time_update + seq_len_decoder_update;
|
||||
LM2GM(&seq_len_decoder_update, seq_lens_decoder+i, sizeof(int));
|
||||
seq_len_this_time_update = 1;
|
||||
LM2GM(&seq_len_this_time_update, seq_lens_this_time + i, sizeof(int));
|
||||
seq_lens_encoder_update = 0;
|
||||
LM2GM(&seq_lens_encoder_update, seq_lens_encoder + i, sizeof(int));
|
||||
int64_t input_ids_update;
|
||||
GM2LM(next_tokens + i, &input_ids_update, sizeof(int64_t));
|
||||
LM2GM(&input_ids_update, input_ids + i * input_ids_stride, sizeof(int64_t));
|
||||
// to judge whether block is not enough
|
||||
if(seq_len_this_time_update != 0 && block_tables[i * block_num_per_seq + seq_len_decoder_update/block_size] == -1){
|
||||
is_block_step[i] = true;
|
||||
seq_len_this_time_update = 0;
|
||||
LM2GM(&seq_len_this_time_update, seq_lens_this_time + i, sizeof(int));
|
||||
stop_flags_sm[i] = true;
|
||||
SM2GM(stop_flags_sm+i, stop_flags+i, sizeof(bool));
|
||||
LM2GM(&seq_len_decoder_update, step_seq_lens_decoder+i, sizeof(int));
|
||||
seq_len_decoder_update = 0;
|
||||
LM2GM(&seq_len_decoder_update, seq_lens_decoder + i, sizeof(int));
|
||||
seq_len_decoder_update = 0;
|
||||
LM2GM(&seq_len_decoder_update, seq_lens_decoder + i, sizeof(int));
|
||||
stop_flags_int_sm[i] = 1;
|
||||
}
|
||||
}else{
|
||||
stop_flags_sm[i] = true;
|
||||
SM2GM(stop_flags_sm+i, stop_flags+i, sizeof(bool));
|
||||
seq_len_this_time_update = 0;
|
||||
LM2GM(&seq_len_this_time_update, seq_lens_this_time + i, sizeof(int));
|
||||
seq_len_decoder_update = 0;
|
||||
seq_lens_encoder_update = 0;
|
||||
LM2GM(&seq_len_decoder_update, seq_lens_decoder + i, sizeof(int));
|
||||
LM2GM(&seq_lens_encoder_update, seq_lens_encoder + i, sizeof(int));
|
||||
int64_t topk_ids_update = -1;
|
||||
LM2GM(&topk_ids_update, topk_ids + i, sizeof(int64_t));
|
||||
stop_flags_int_sm[i] = 1;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
sync_all();
|
||||
sync_cluster();
|
||||
int stop_sum = 0;
|
||||
if (cid == 0) {
|
||||
for (int i = 0; i < max_bsz; i++) {
|
||||
stop_sum += stop_flags_int_sm[i];
|
||||
}
|
||||
// printf("stop_sum : %d\n", stop_sum);
|
||||
int64_t stop_num;
|
||||
GM2LM(stop_nums, &stop_num, sizeof(int64_t));
|
||||
bool not_need_stop_update = stop_sum < static_cast<int>(stop_num);
|
||||
mfence_lm();
|
||||
LM2GM(¬_need_stop_update, not_need_stop, sizeof(bool));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace plugin
|
||||
} // namespace xpu3
|
@@ -0,0 +1,107 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "xpu/plugin.h"
|
||||
#include "xpu/refactor/impl_public/wrapper_check.h"
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
|
||||
namespace xpu3 {
|
||||
namespace plugin {
|
||||
|
||||
__attribute__((global)) void
|
||||
recover_decode_task(bool *stop_flags,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int *block_tables,
|
||||
bool *is_block_step,
|
||||
const int bsz,
|
||||
const int block_num_per_seq,
|
||||
const int block_size);
|
||||
|
||||
} // namespace plugin
|
||||
} // namespace xpu3
|
||||
|
||||
namespace baidu {
|
||||
namespace xpu {
|
||||
namespace api {
|
||||
namespace plugin {
|
||||
|
||||
static int xpu3_wrapper(Context *ctx, bool *stop_flags,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int *block_tables,
|
||||
bool *is_block_step,
|
||||
const int bsz,
|
||||
const int block_num_per_seq,
|
||||
const int block_size) {
|
||||
using XPU_INT64 = typename XPUIndexType<int64_t>::type;
|
||||
auto recover_decode_task = xpu3::plugin::recover_decode_task;
|
||||
recover_decode_task<<<ctx->ncluster(), 64, ctx->xpu_stream>>>(
|
||||
stop_flags,
|
||||
seq_lens_this_time,
|
||||
seq_lens_encoder,
|
||||
seq_lens_decoder,
|
||||
step_seq_lens_decoder,
|
||||
block_tables,
|
||||
is_block_step,
|
||||
bsz,
|
||||
block_num_per_seq,
|
||||
block_size);
|
||||
return api::SUCCESS;
|
||||
}
|
||||
|
||||
int recover_decode_task(Context *ctx, bool *stop_flags,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int *block_tables,
|
||||
bool *is_block_step,
|
||||
const int bsz,
|
||||
const int block_num_per_seq,
|
||||
const int block_size) {
|
||||
WRAPPER_CHECK_CTX(ctx);
|
||||
WRAPPER_DUMP_FUNCTION_T1(ctx, "recover_decode_task", int);
|
||||
WRAPPER_DUMP_PARAM5(ctx, stop_flags, seq_lens_this_time,
|
||||
seq_lens_encoder, seq_lens_decoder, step_seq_lens_decoder);
|
||||
WRAPPER_DUMP_PARAM2(ctx, block_tables, is_block_step);
|
||||
WRAPPER_DUMP_PARAM3(ctx, bsz, block_num_per_seq, block_size);
|
||||
WRAPPER_DUMP(ctx);
|
||||
if (ctx->dev().type() == api::kCPU) {
|
||||
assert(false);
|
||||
}
|
||||
if (ctx->dev().type() == api::kXPU2 || ctx->dev().type() == api::kXPU3) {
|
||||
return xpu3_wrapper(ctx, stop_flags,
|
||||
seq_lens_this_time,
|
||||
seq_lens_encoder,
|
||||
seq_lens_decoder,
|
||||
step_seq_lens_decoder,
|
||||
block_tables,
|
||||
is_block_step,
|
||||
bsz,
|
||||
block_num_per_seq,
|
||||
block_size);
|
||||
}
|
||||
WRAPPER_UNIMPLEMENTED(ctx);
|
||||
}
|
||||
|
||||
} // namespace plugin
|
||||
} // namespace api
|
||||
} // namespace xpu
|
||||
} // namespace baidu
|
149
custom_ops/xpu_ops/src/plugin/src/wrapper/update_inputs_v1.cpp
Normal file
149
custom_ops/xpu_ops/src/plugin/src/wrapper/update_inputs_v1.cpp
Normal file
@@ -0,0 +1,149 @@
|
||||
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "xpu/plugin.h"
|
||||
#include "xpu/refactor/impl_public/wrapper_check.h"
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
|
||||
namespace xpu3 {
|
||||
namespace plugin {
|
||||
|
||||
__attribute__((global)) void
|
||||
update_inputs_v1(bool *not_need_stop,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int64_t *prompt_lens,
|
||||
int64_t *topk_ids,
|
||||
int64_t *input_ids,
|
||||
int *block_tables,
|
||||
const int64_t *stop_nums,
|
||||
bool *stop_flags,
|
||||
bool *is_block_step,
|
||||
const int64_t *next_tokens,
|
||||
const int bsz,
|
||||
const int max_bsz,
|
||||
const int input_ids_stride,
|
||||
const int block_num_per_seq,
|
||||
const int block_size);
|
||||
|
||||
} // namespace plugin
|
||||
} // namespace xpu3
|
||||
|
||||
namespace baidu {
|
||||
namespace xpu {
|
||||
namespace api {
|
||||
namespace plugin {
|
||||
|
||||
static int xpu3_wrapper(Context *ctx, bool *not_need_stop,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int64_t *prompt_lens,
|
||||
int64_t *topk_ids,
|
||||
int64_t *input_ids,
|
||||
int *block_tables,
|
||||
const int64_t *stop_nums,
|
||||
bool *stop_flags,
|
||||
bool *is_block_step,
|
||||
const int64_t *next_tokens,
|
||||
const int bsz,
|
||||
const int max_bsz,
|
||||
const int input_ids_stride,
|
||||
const int block_num_per_seq,
|
||||
const int block_size) {
|
||||
using XPU_INT64 = typename XPUIndexType<int64_t>::type;
|
||||
auto update_inputs_v1 = xpu3::plugin::update_inputs_v1;
|
||||
// kernel 内要做 reduce,只能用 1 个 cluster
|
||||
update_inputs_v1<<<1, 64, ctx->xpu_stream>>>(
|
||||
not_need_stop,
|
||||
seq_lens_this_time,
|
||||
seq_lens_encoder,
|
||||
seq_lens_decoder,
|
||||
step_seq_lens_decoder,
|
||||
reinterpret_cast<XPU_INT64 *>(prompt_lens),
|
||||
reinterpret_cast<XPU_INT64 *>(topk_ids),
|
||||
reinterpret_cast<XPU_INT64 *>(input_ids),
|
||||
block_tables,
|
||||
reinterpret_cast<const XPU_INT64 *>(stop_nums),
|
||||
stop_flags,
|
||||
is_block_step,
|
||||
reinterpret_cast<const XPU_INT64 *>(next_tokens),
|
||||
bsz,
|
||||
max_bsz,
|
||||
input_ids_stride,
|
||||
block_num_per_seq,
|
||||
block_size);
|
||||
return api::SUCCESS;
|
||||
}
|
||||
|
||||
int update_inputs_v1(Context *ctx, bool *not_need_stop,
|
||||
int *seq_lens_this_time,
|
||||
int *seq_lens_encoder,
|
||||
int *seq_lens_decoder,
|
||||
int *step_seq_lens_decoder,
|
||||
int64_t *prompt_lens,
|
||||
int64_t *topk_ids,
|
||||
int64_t *input_ids,
|
||||
int *block_tables,
|
||||
const int64_t *stop_nums,
|
||||
bool *stop_flags,
|
||||
bool *is_block_step,
|
||||
const int64_t *next_tokens,
|
||||
const int bsz,
|
||||
const int max_bsz,
|
||||
const int input_ids_stride,
|
||||
const int block_num_per_seq,
|
||||
const int block_size) {
|
||||
WRAPPER_CHECK_CTX(ctx);
|
||||
WRAPPER_DUMP_FUNCTION_T1(ctx, "update_inputs_v1", int);
|
||||
WRAPPER_DUMP_PARAM5(ctx, not_need_stop, seq_lens_this_time,
|
||||
seq_lens_encoder, seq_lens_decoder, step_seq_lens_decoder);
|
||||
WRAPPER_DUMP_PARAM5(ctx, prompt_lens, topk_ids, input_ids, block_tables, stop_nums);
|
||||
WRAPPER_DUMP_PARAM3(ctx, stop_flags, is_block_step, next_tokens);
|
||||
WRAPPER_DUMP_PARAM5(ctx, bsz, max_bsz, input_ids_stride, block_num_per_seq, block_size);
|
||||
WRAPPER_DUMP(ctx);
|
||||
if (ctx->dev().type() == api::kCPU) {
|
||||
assert(false);
|
||||
}
|
||||
if (ctx->dev().type() == api::kXPU2 || ctx->dev().type() == api::kXPU3) {
|
||||
return xpu3_wrapper(ctx, not_need_stop,
|
||||
seq_lens_this_time,
|
||||
seq_lens_encoder,
|
||||
seq_lens_decoder,
|
||||
step_seq_lens_decoder,
|
||||
prompt_lens,
|
||||
topk_ids,
|
||||
input_ids,
|
||||
block_tables,
|
||||
stop_nums,
|
||||
stop_flags,
|
||||
is_block_step,
|
||||
next_tokens,
|
||||
bsz,
|
||||
max_bsz,
|
||||
input_ids_stride,
|
||||
block_num_per_seq,
|
||||
block_size);
|
||||
}
|
||||
WRAPPER_UNIMPLEMENTED(ctx);
|
||||
}
|
||||
|
||||
} // namespace plugin
|
||||
} // namespace api
|
||||
} // namespace xpu
|
||||
} // namespace baidu
|
@@ -144,6 +144,8 @@ def xpu_setup_ops():
|
||||
"./ops/get_token_penalty_multi_scores.cc",
|
||||
"./ops/get_padding_offset.cc",
|
||||
"./ops/update_inputs.cc",
|
||||
"./ops/recover_decode_task.cc",
|
||||
"./ops/update_inputs_v1.cc",
|
||||
"./ops/get_output.cc",
|
||||
"./ops/step.cc",
|
||||
"./ops/get_infer_param.cc",
|
||||
|
@@ -22,8 +22,9 @@ import numpy as np
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.engine.request import Request
|
||||
from fastdeploy.engine.request import Request, RequestType
|
||||
from fastdeploy.model_executor.forward_meta import ForwardMeta, XPUForwardMeta
|
||||
from fastdeploy.model_executor.layers.attention import get_attention_backend
|
||||
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
|
||||
@@ -33,6 +34,13 @@ from fastdeploy.model_executor.layers.rotary_embedding import get_rope
|
||||
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
||||
from fastdeploy.model_executor.layers.sample.sampler import Sampler
|
||||
from fastdeploy.model_executor.model_loader import get_model_from_loader
|
||||
from fastdeploy.model_executor.ops.xpu import (
|
||||
adjust_batch,
|
||||
get_infer_param,
|
||||
get_padding_offset,
|
||||
recover_decode_task,
|
||||
update_inputs_v1,
|
||||
)
|
||||
from fastdeploy.utils import get_logger
|
||||
from fastdeploy.worker.model_runner_base import ModelRunnerBase
|
||||
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
|
||||
@@ -53,11 +61,6 @@ def xpu_pre_process(
|
||||
max_len = input_ids.shape[1]
|
||||
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time)
|
||||
token_num = paddle.sum(seq_lens_this_time)
|
||||
from fastdeploy.model_executor.ops.xpu import (
|
||||
adjust_batch,
|
||||
get_infer_param,
|
||||
get_padding_offset,
|
||||
)
|
||||
|
||||
(
|
||||
ids_remove_padding,
|
||||
@@ -111,6 +114,18 @@ def xpu_pre_process(
|
||||
) = get_infer_param(seq_lens_encoder, seq_lens_decoder)
|
||||
|
||||
# Adjust batch
|
||||
# print(f"=========================adjust_batch 更新前=========================")
|
||||
# print(f"ids_remove_padding : {ids_remove_padding}")
|
||||
# print(f"cum_offsets : {cum_offsets}")
|
||||
# print(f"xpu_forward_meta.encoder_seq_lod : {xpu_forward_meta.encoder_seq_lod}")
|
||||
# print(f"xpu_forward_meta.encoder_batch_idx: {xpu_forward_meta.encoder_batch_idx}")
|
||||
# print(f"xpu_forward_meta.decoder_batch_idx : {xpu_forward_meta.decoder_batch_idx}")
|
||||
# print(f"xpu_forward_meta.encoder_seq_lod_cpu : {xpu_forward_meta.encoder_seq_lod_cpu}")
|
||||
# print(f"xpu_forward_meta.encoder_batch_idx_cpu : {xpu_forward_meta.encoder_batch_idx_cpu}")
|
||||
# print(f"xpu_forward_meta.decoder_batch_idx_cpu : {xpu_forward_meta.decoder_batch_idx_cpu}")
|
||||
# print(f"xpu_forward_meta.enc_batch : {xpu_forward_meta.encoder_batch_map}")
|
||||
# print(f"xpu_forward_meta.dec_batch : {xpu_forward_meta.decoder_batch_map}")
|
||||
|
||||
adjusted_input = adjust_batch(
|
||||
ids_remove_padding.reshape([-1, 1]),
|
||||
cum_offsets,
|
||||
@@ -125,6 +140,17 @@ def xpu_pre_process(
|
||||
None, # output_padding_offset
|
||||
-1, # max_input_length
|
||||
)
|
||||
# print(f"=========================adjust_batch 更新后=========================")
|
||||
# print(f"ids_remove_padding : {ids_remove_padding}")
|
||||
# print(f"cum_offsets : {cum_offsets}")
|
||||
# print(f"xpu_forward_meta.encoder_seq_lod : {xpu_forward_meta.encoder_seq_lod}")
|
||||
# print(f"xpu_forward_meta.encoder_batch_idx: {xpu_forward_meta.encoder_batch_idx}")
|
||||
# print(f"xpu_forward_meta.decoder_batch_idx : {xpu_forward_meta.decoder_batch_idx}")
|
||||
# print(f"xpu_forward_meta.encoder_seq_lod_cpu : {xpu_forward_meta.encoder_seq_lod_cpu}")
|
||||
# print(f"xpu_forward_meta.encoder_batch_idx_cpu : {xpu_forward_meta.encoder_batch_idx_cpu}")
|
||||
# print(f"xpu_forward_meta.decoder_batch_idx_cpu : {xpu_forward_meta.decoder_batch_idx_cpu}")
|
||||
# print(f"xpu_forward_meta.enc_batch : {xpu_forward_meta.encoder_batch_map}")
|
||||
|
||||
adjusted_input = adjusted_input.squeeze(1)
|
||||
|
||||
share_inputs["ids_remove_padding"] = adjusted_input
|
||||
@@ -160,7 +186,9 @@ def xpu_process_output(
|
||||
def xpu_post_process(
|
||||
sampled_token_ids: paddle.Tensor,
|
||||
model_output: ModelOutputData,
|
||||
skip_save_output: bool,
|
||||
share_inputs: Dict[str, paddle.Tensor],
|
||||
block_size: int = 64,
|
||||
skip_save_output: bool = False,
|
||||
) -> None:
|
||||
""" """
|
||||
from fastdeploy.model_executor.ops.xpu import (
|
||||
@@ -194,17 +222,66 @@ def xpu_post_process(
|
||||
|
||||
# 2. Update the input buffer of the model
|
||||
with paddle.framework._no_check_dy2st_diff():
|
||||
update_inputs(
|
||||
model_output.stop_flags,
|
||||
model_output.not_need_stop,
|
||||
model_output.seq_lens_this_time,
|
||||
model_output.seq_lens_encoder,
|
||||
model_output.seq_lens_decoder,
|
||||
model_output.input_ids,
|
||||
model_output.stop_nums,
|
||||
sampled_token_ids,
|
||||
model_output.is_block_step,
|
||||
)
|
||||
if envs.ENABLE_V1_KVCACHE_SCHEDULER and not skip_save_output:
|
||||
|
||||
# print(f"============================================update_inputs_v1 更新前=========================================")
|
||||
# print(f"model_output.stop_flags : {model_output.stop_flags}")
|
||||
# print(f"model_output.not_need_stop : {model_output.not_need_stop}")
|
||||
# print(f"model_output.seq_lens_this_time : {model_output.seq_lens_this_time}")
|
||||
# print(f"model_output.seq_lens_encoder : {model_output.seq_lens_encoder}")
|
||||
# print(f"model_output.seq_lens_decoder : {model_output.seq_lens_decoder}")
|
||||
# print(f"share_inputs['step_seq_lens_decoder'] : {share_inputs['step_seq_lens_decoder']}")
|
||||
# print(f"share_inputs['prompt_lens'] : {share_inputs['prompt_lens']}")
|
||||
# print(f"sampled_token_ids : {sampled_token_ids}")
|
||||
# print(f"model_output.input_ids : {model_output.input_ids}")
|
||||
# print(f"model_output.stop_nums : {model_output.stop_nums}")
|
||||
# print(f"model_output.next_tokens : {model_output.next_tokens}")
|
||||
# print(f"model_output.is_block_step : {model_output.is_block_step}")
|
||||
# print(f"share_inputs['block_tables'] : {share_inputs['block_tables']}")
|
||||
# print(f"block_size : {block_size}")
|
||||
update_inputs_v1(
|
||||
model_output.stop_flags,
|
||||
model_output.not_need_stop,
|
||||
model_output.seq_lens_this_time,
|
||||
model_output.seq_lens_encoder,
|
||||
model_output.seq_lens_decoder,
|
||||
share_inputs["step_seq_lens_decoder"],
|
||||
share_inputs["prompt_lens"],
|
||||
sampled_token_ids,
|
||||
model_output.input_ids,
|
||||
share_inputs["block_tables"],
|
||||
model_output.stop_nums,
|
||||
model_output.next_tokens,
|
||||
model_output.is_block_step,
|
||||
block_size,
|
||||
)
|
||||
# print(f"============================================update_inputs_v1 更新后=========================================")
|
||||
# print(f"model_output.stop_flags : {model_output.stop_flags}")
|
||||
# print(f"model_output.not_need_stop : {model_output.not_need_stop}")
|
||||
# print(f"model_output.seq_lens_this_time : {model_output.seq_lens_this_time}")
|
||||
# print(f"model_output.seq_lens_encoder : {model_output.seq_lens_encoder}")
|
||||
# print(f"model_output.seq_lens_decoder : {model_output.seq_lens_decoder}")
|
||||
# print(f"share_inputs['step_seq_lens_decoder'] : {share_inputs['step_seq_lens_decoder']}")
|
||||
# print(f"share_inputs['prompt_lens'] : {share_inputs['prompt_lens']}")
|
||||
# print(f"sampled_token_ids : {sampled_token_ids}")
|
||||
# print(f"model_output.input_ids : {model_output.input_ids}")
|
||||
# print(f"model_output.stop_nums : {model_output.stop_nums}")
|
||||
# print(f"model_output.next_tokens : {model_output.next_tokens}")
|
||||
# print(f"model_output.is_block_step : {model_output.is_block_step}")
|
||||
# print(f"share_inputs['block_tables'] : {share_inputs['block_tables']}")
|
||||
# print(f"block_size : {block_size}")
|
||||
else:
|
||||
update_inputs(
|
||||
model_output.stop_flags,
|
||||
model_output.not_need_stop,
|
||||
model_output.seq_lens_this_time,
|
||||
model_output.seq_lens_encoder,
|
||||
model_output.seq_lens_decoder,
|
||||
model_output.input_ids,
|
||||
model_output.stop_nums,
|
||||
sampled_token_ids,
|
||||
model_output.is_block_step,
|
||||
)
|
||||
# 3. Transmit the model's output and stop generation signal via message queue.
|
||||
# In the future, we will abandon this approach.
|
||||
if not skip_save_output:
|
||||
@@ -290,6 +367,96 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
# Forward meta store the global meta information of the forward
|
||||
self.forward_meta: ForwardMeta = None
|
||||
|
||||
def insert_tasks_v1(self, req_dicts: List[Request]):
|
||||
"""
|
||||
Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
|
||||
"""
|
||||
# NOTE(luotingdan): Lazy initialize kv cache
|
||||
if "caches" not in self.share_inputs:
|
||||
self.initialize_kv_cache()
|
||||
|
||||
req_len = len(req_dicts)
|
||||
has_prefill_task = False
|
||||
for i in range(req_len):
|
||||
request = req_dicts[i]
|
||||
idx = request.idx
|
||||
if request.task_type.value == RequestType.PREFILL.value: # prefill task
|
||||
logger.debug(f"Handle prefill request {request} at idx {idx}")
|
||||
prefill_start_index = request.prefill_start_index
|
||||
prefill_end_index = request.prefill_end_index
|
||||
length = prefill_end_index - prefill_start_index
|
||||
input_ids = request.prompt_token_ids + request.output_token_ids
|
||||
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
|
||||
input_ids[prefill_start_index:prefill_end_index]
|
||||
)
|
||||
encoder_block_num = len(request.block_tables)
|
||||
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
|
||||
request.block_tables, dtype="int32"
|
||||
)
|
||||
self.share_inputs["stop_flags"][idx : idx + 1] = False
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
|
||||
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["prompt_lens"][idx : idx + 1] = len(input_ids)
|
||||
self.share_inputs["is_block_step"][idx : idx + 1] = False
|
||||
self.share_inputs["step_idx"][idx : idx + 1] = (
|
||||
len(request.output_token_ids) if prefill_end_index >= len(input_ids) else 0
|
||||
)
|
||||
has_prefill_task = True
|
||||
elif request.task_type.value == RequestType.DECODE.value: # decode task
|
||||
logger.debug(f"Handle decode request {request} at idx {idx}")
|
||||
encoder_block_num = len(request.block_tables)
|
||||
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
|
||||
request.block_tables, dtype="int32"
|
||||
)
|
||||
continue
|
||||
else: # preempted task
|
||||
logger.debug(f"Handle preempted request {request} at idx {idx}")
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
|
||||
self.share_inputs["stop_flags"][idx : idx + 1] = True
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 0
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
|
||||
self.share_inputs["is_block_step"][idx : idx + 1] = False
|
||||
continue
|
||||
|
||||
if len(request.eos_token_ids) < self.parallel_config.eos_tokens_lens:
|
||||
request.eos_token_ids.append(request.eos_token_ids[0])
|
||||
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
|
||||
|
||||
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
|
||||
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
|
||||
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
|
||||
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
|
||||
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
|
||||
|
||||
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
|
||||
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
|
||||
"max_tokens", self.model_config.max_model_len
|
||||
)
|
||||
|
||||
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
|
||||
self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = length
|
||||
|
||||
if request.get("seed") is not None:
|
||||
self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
|
||||
|
||||
if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
|
||||
stop_seqs_num = len(request.get("stop_seqs_len"))
|
||||
for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
|
||||
request.stop_seqs_len.append(0)
|
||||
self.share_inputs["stop_seqs_len"][:] = np.array(request.stop_seqs_len, dtype="int32")
|
||||
self.share_inputs["stop_seqs"][:stop_seqs_num, : len(request.get("stop_token_ids")[0])] = np.array(
|
||||
request.get("stop_token_ids"), dtype="int64"
|
||||
)
|
||||
if has_prefill_task:
|
||||
self.share_inputs["not_need_stop"][0] = True
|
||||
|
||||
def process_prefill_inputs(self, req_dicts: List[Request]):
|
||||
"""Process inputs for prefill tasks and update share_inputs buffer"""
|
||||
req_len = len(req_dicts)
|
||||
@@ -392,6 +559,8 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["step_seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
|
||||
self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
|
||||
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
|
||||
self.share_inputs["not_need_stop"] = paddle.full(
|
||||
[1], False, dtype="bool"
|
||||
@@ -455,8 +624,19 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
dtype="int32",
|
||||
)
|
||||
|
||||
def _prepare_inputs(self) -> None:
|
||||
def _prepare_inputs(self, is_dummy_run=False) -> None:
|
||||
"""prepare the model inputs"""
|
||||
if envs.ENABLE_V1_KVCACHE_SCHEDULER and not is_dummy_run:
|
||||
recover_decode_task(
|
||||
self.share_inputs["stop_flags"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
self.share_inputs["seq_lens_encoder"],
|
||||
self.share_inputs["seq_lens_decoder"],
|
||||
self.share_inputs["step_seq_lens_decoder"],
|
||||
self.share_inputs["block_tables"],
|
||||
self.share_inputs["is_block_step"],
|
||||
self.parallel_config.block_size,
|
||||
)
|
||||
self.forward_meta = xpu_pre_process(
|
||||
self.share_inputs["input_ids"],
|
||||
self.share_inputs["seq_lens_this_time"],
|
||||
@@ -655,7 +835,7 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
intermediate_tensors:
|
||||
"""
|
||||
# 1. Prepare inputs of model and decoder.
|
||||
self._prepare_inputs()
|
||||
self._prepare_inputs(is_dummy_run=is_dummy_run)
|
||||
|
||||
# 2. Padding inputs for cuda grph
|
||||
|
||||
@@ -699,6 +879,8 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
xpu_post_process(
|
||||
sampled_token_ids=sampler_output.sampled_token_ids,
|
||||
model_output=model_output_data,
|
||||
share_inputs=self.share_inputs,
|
||||
block_size=self.parallel_config.block_size,
|
||||
skip_save_output=is_dummy_run,
|
||||
)
|
||||
|
||||
|
@@ -20,6 +20,7 @@ from typing import List, Optional
|
||||
import paddle
|
||||
from paddle import nn
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.engine.request import Request
|
||||
from fastdeploy.utils import get_logger
|
||||
@@ -154,7 +155,10 @@ class XpuWorker(WorkerBase):
|
||||
TODO(gongshaotian):The scheduler should schedule the handling of prefill,
|
||||
and workers and modelrunners should not perceive it.
|
||||
"""
|
||||
self.model_runner.process_prefill_inputs(req_dicts=req_dicts)
|
||||
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
||||
self.model_runner.insert_tasks_v1(req_dicts=req_dicts)
|
||||
else:
|
||||
self.model_runner.process_prefill_inputs(req_dicts=req_dicts)
|
||||
|
||||
def check_health(self) -> bool:
|
||||
""" """
|
||||
|
Reference in New Issue
Block a user