[XPU] Support kvblock centralized management (#3017)

This commit is contained in:
yinwei
2025-07-29 10:40:55 +08:00
committed by GitHub
parent 286802a070
commit f2a528f9ae
10 changed files with 843 additions and 21 deletions

View File

@@ -0,0 +1,68 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <paddle/phi/backends/xpu/xpu_context.h>
#include "paddle/extension.h"
#include "paddle/phi/core/enforce.h"
#include "xpu/plugin.h"
void RecoverDecodeTask(const paddle::Tensor &stop_flags,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &step_seq_lens_decoder,
const paddle::Tensor &block_tables,
const paddle::Tensor &is_block_step,
const int block_size) {
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx =
paddle::experimental::DeviceContextPool::Instance().Get(place);
auto xpu_ctx = static_cast<const phi::XPUContext *>(dev_ctx);
const int bsz = seq_lens_this_time.shape()[0];
const int block_num_per_seq = block_tables.shape()[1];
int r = baidu::xpu::api::plugin::recover_decode_task(
xpu_ctx->x_context(),
const_cast<bool *>(stop_flags.data<bool>()),
const_cast<int *>(seq_lens_this_time.data<int>()),
const_cast<int *>(seq_lens_encoder.data<int>()),
const_cast<int *>(seq_lens_decoder.data<int>()),
const_cast<int *>(step_seq_lens_decoder.data<int>()),
const_cast<int *>(block_tables.data<int>()),
const_cast<bool *>(is_block_step.data<bool>()),
bsz,
block_num_per_seq,
block_size);
PD_CHECK(r == 0, "baidu::xpu::api::plugin::recover_decode_task failed.");
}
PD_BUILD_OP(recover_decode_task)
.Inputs({"stop_flags",
"seq_lens_this_time",
"seq_lens_encoder",
"seq_lens_decoder",
"step_seq_lens_decoder",
"block_tables",
"is_block_step"})
.Attrs({"block_size: int"})
.Outputs({"seq_lens_this_time_out",
"seq_lens_encoder_out",
"seq_lens_decoder_out",
"stop_flags_out",
"is_block_step_out"})
.SetInplaceMap({{"seq_lens_this_time", "seq_lens_this_time_out"},
{"seq_lens_encoder", "seq_lens_encoder_out"},
{"seq_lens_decoder", "seq_lens_decoder_out"},
{"stop_flags", "stop_flags_out"},
{"is_block_step", "is_block_step_out"}})
.SetKernelFn(PD_KERNEL(RecoverDecodeTask));

View File

@@ -0,0 +1,105 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <paddle/phi/backends/xpu/xpu_context.h>
#include "paddle/extension.h"
#include "paddle/phi/core/enforce.h"
#include "xpu/plugin.h"
void UpdateInputesV1(const paddle::Tensor &stop_flags,
const paddle::Tensor &not_need_stop, // only on cpu
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &step_seq_lens_decoder,
const paddle::Tensor &prompt_lens,
const paddle::Tensor &topk_ids,
const paddle::Tensor &input_ids,
const paddle::Tensor &block_tables,
const paddle::Tensor &stop_nums,
const paddle::Tensor &next_tokens,
const paddle::Tensor &is_block_step,
const int block_size) {
phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId());
auto dev_ctx =
paddle::experimental::DeviceContextPool::Instance().Get(place);
auto xpu_ctx = static_cast<const phi::XPUContext *>(dev_ctx);
const int max_bsz = stop_flags.shape()[0];
const int now_bsz = seq_lens_this_time.shape()[0];
// std::cout << "now_bsz: " << now_bsz << std::endl;
const int input_ids_stride = input_ids.shape()[1];
const int block_num_per_seq = block_tables.shape()[1];
auto not_need_stop_gpu = not_need_stop.copy_to(stop_flags.place(), false);
int r = baidu::xpu::api::plugin::update_inputs_v1(
xpu_ctx->x_context(),
const_cast<bool *>(not_need_stop_gpu.data<bool>()),
const_cast<int *>(seq_lens_this_time.data<int>()),
const_cast<int *>(seq_lens_encoder.data<int>()),
const_cast<int *>(seq_lens_decoder.data<int>()),
const_cast<int *>(step_seq_lens_decoder.data<int>()),
const_cast<int64_t *>(prompt_lens.data<int64_t>()),
const_cast<int64_t *>(topk_ids.data<int64_t>()),
const_cast<int64_t *>(input_ids.data<int64_t>()),
const_cast<int *>(block_tables.data<int>()),
stop_nums.data<int64_t>(),
const_cast<bool *>(stop_flags.data<bool>()),
const_cast<bool *>(is_block_step.data<bool>()),
next_tokens.data<int64_t>(),
now_bsz,
max_bsz,
input_ids_stride,
block_num_per_seq,
block_size);
PD_CHECK(r == 0, "baidu::xpu::api::plugin::update_inputs_kernel_v1 failed.");
auto not_need_stop_cpu =
not_need_stop_gpu.copy_to(not_need_stop.place(), false);
bool *not_need_stop_data = const_cast<bool *>(not_need_stop.data<bool>());
not_need_stop_data[0] = not_need_stop_cpu.data<bool>()[0];
}
PD_BUILD_OP(update_inputs_v1)
.Inputs({"stop_flags",
"not_need_stop",
"seq_lens_this_time",
"seq_lens_encoder",
"seq_lens_decoder",
"step_seq_lens_decoder",
"prompt_lens",
"topk_ids",
"input_ids",
"block_tables",
"stop_nums",
"next_tokens",
"is_block_step"})
.Attrs({"block_size: int"})
.Outputs({"not_need_stop_out",
"seq_lens_this_time_out",
"seq_lens_encoder_out",
"seq_lens_decoder_out",
"step_seq_lens_decoder_out",
"topk_ids_out",
"input_ids_out",
"stop_flags_out",
"is_block_step_out"})
.SetInplaceMap({{"not_need_stop", "not_need_stop_out"},
{"seq_lens_this_time", "seq_lens_this_time_out"},
{"seq_lens_encoder", "seq_lens_encoder_out"},
{"seq_lens_decoder", "seq_lens_decoder_out"},
{"topk_ids", "topk_ids_out"},
{"input_ids", "input_ids_out"},
{"stop_flags", "stop_flags_out"},
{"step_seq_lens_decoder", "step_seq_lens_decoder_out"},
{"is_block_step", "is_block_step_out"}})
.SetKernelFn(PD_KERNEL(UpdateInputesV1));

View File

@@ -86,6 +86,39 @@ recover_block(Context *ctx,
const int block_num_per_seq, const int length,
const int pre_id_length);
DLL_EXPORT int
recover_decode_task(Context *ctx, bool *stop_flags,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int *block_tables,
bool *is_block_step,
const int bsz,
const int block_num_per_seq,
const int block_size);
DLL_EXPORT int
update_inputs_v1(Context *ctx, bool *not_need_stop,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int64_t *prompt_lens,
int64_t *topk_ids,
int64_t *input_ids,
int *block_tables,
const int64_t *stop_nums,
bool *stop_flags,
bool *is_block_step,
const int64_t *next_tokens,
const int bsz,
const int max_bsz,
const int input_ids_stride,
const int block_num_per_seq,
const int block_size);
template <typename TX, typename TY>
DLL_EXPORT int
eb_adjust_batch(Context *ctx, const TX *x, TY *y,

View File

@@ -0,0 +1,41 @@
#include "xpu/kernel/cluster.h"
#include "xpu/kernel/cluster_partition.h"
#include "xpu/kernel/cluster_primitive.h"
namespace xpu3 {
namespace plugin {
__global__ void recover_decode_task(bool *stop_flags,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int *block_tables,
bool *is_block_step,
const int bsz,
const int block_num_per_seq,
const int block_size) {
int cid = core_id();
int ncores = core_num();
int clusterid = cluster_id();
int nclusters = cluster_num();
int thread_idx = clusterid * ncores + cid;
int nthreads = nclusters * ncores;
// if (clusterid != 0) return;
for (; thread_idx < bsz; thread_idx += nthreads) {
if(is_block_step[thread_idx] == true) {
// int *block_table_now = block_tables + thread_idx * block_num_per_seq;
if (block_tables[thread_idx * block_num_per_seq + step_seq_lens_decoder[thread_idx] / block_size] != -1) {
// can be recovered for decoding
is_block_step[thread_idx] = false;
seq_lens_this_time[thread_idx]= 1;
stop_flags[thread_idx] = false;
seq_lens_encoder[thread_idx] = 0;
seq_lens_decoder[thread_idx] = step_seq_lens_decoder[thread_idx];
}
}
}
}
} // namespace plugin
} // namespace xpu3

View File

@@ -0,0 +1,131 @@
#include "xpu/kernel/cluster.h"
#include "xpu/kernel/cluster_partition.h"
#include "xpu/kernel/cluster_primitive.h"
// #include <stdio.h>
// using namespace std;
#include "xpu/kernel/xtdk_io.h"
#include "xpu/kernel/xtdk.h"
namespace xpu3 {
namespace plugin {
__global__ void update_inputs_v1(bool *not_need_stop,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int64_t *prompt_lens,
int64_t *topk_ids,
int64_t *input_ids,
int *block_tables,
const int64_t *stop_nums,
bool *stop_flags,
bool *is_block_step,
const int64_t *next_tokens,
const int bsz,
const int max_bsz,
const int input_ids_stride,
const int block_num_per_seq,
const int block_size) {
// std::cout << "seq_lens_this_time " << seq_lens_this_time[0] << std::endl;
int cid = core_id();
int ncores = core_num();
int clusterid = cluster_id();
int nclusters = cluster_num();
int thread_idx = clusterid * ncores + cid;
if (clusterid != 0) return;
const int max_bs = 1024;
__shared__ bool stop_flags_sm[max_bs];
__shared__ int stop_flags_int_sm[max_bs];
if(cid == 0){
GM2SM(stop_flags, stop_flags_sm, sizeof(bool) * bsz);
}
sync_all();
for(int i = cid; i < bsz; i+= ncores){
if(i < bsz){
stop_flags_sm[i] = stop_flags[i];
stop_flags_int_sm[i] = static_cast<int64_t>(stop_flags_sm[i]);
}else{
stop_flags_sm[i] = true;
stop_flags_int_sm[i] = 1;
}
if(i<bsz){
int seq_len_this_time_update = 0;
int seq_len_decoder_update = 0;
int seq_lens_encoder_update = 0;
if(stop_flags_sm[i]){
LM2GM(&seq_len_this_time_update, seq_lens_this_time + i, sizeof(int));
LM2GM(&seq_len_decoder_update, seq_lens_decoder + i, sizeof(int));
LM2GM(&seq_lens_encoder_update, seq_lens_encoder + i, sizeof(int));
}else{
GM2LM(seq_lens_this_time+i, &seq_len_this_time_update, sizeof(int));
GM2LM(seq_lens_decoder+i, &seq_len_decoder_update, sizeof(int));
GM2LM(seq_lens_encoder+i, &seq_lens_encoder_update, sizeof(int));
int sum_of_seq_lens_this_time_and_seq_lens_decoder = seq_len_this_time_update + seq_len_decoder_update;
int prompt_lens_update = 0;
GM2LM(prompt_lens+i, &prompt_lens_update, sizeof(int64_t));
// decoding
if(sum_of_seq_lens_this_time_and_seq_lens_decoder >= prompt_lens_update){
seq_len_decoder_update = seq_len_this_time_update + seq_len_decoder_update;
LM2GM(&seq_len_decoder_update, seq_lens_decoder+i, sizeof(int));
seq_len_this_time_update = 1;
LM2GM(&seq_len_this_time_update, seq_lens_this_time + i, sizeof(int));
seq_lens_encoder_update = 0;
LM2GM(&seq_lens_encoder_update, seq_lens_encoder + i, sizeof(int));
int64_t input_ids_update;
GM2LM(next_tokens + i, &input_ids_update, sizeof(int64_t));
LM2GM(&input_ids_update, input_ids + i * input_ids_stride, sizeof(int64_t));
// to judge whether block is not enough
if(seq_len_this_time_update != 0 && block_tables[i * block_num_per_seq + seq_len_decoder_update/block_size] == -1){
is_block_step[i] = true;
seq_len_this_time_update = 0;
LM2GM(&seq_len_this_time_update, seq_lens_this_time + i, sizeof(int));
stop_flags_sm[i] = true;
SM2GM(stop_flags_sm+i, stop_flags+i, sizeof(bool));
LM2GM(&seq_len_decoder_update, step_seq_lens_decoder+i, sizeof(int));
seq_len_decoder_update = 0;
LM2GM(&seq_len_decoder_update, seq_lens_decoder + i, sizeof(int));
seq_len_decoder_update = 0;
LM2GM(&seq_len_decoder_update, seq_lens_decoder + i, sizeof(int));
stop_flags_int_sm[i] = 1;
}
}else{
stop_flags_sm[i] = true;
SM2GM(stop_flags_sm+i, stop_flags+i, sizeof(bool));
seq_len_this_time_update = 0;
LM2GM(&seq_len_this_time_update, seq_lens_this_time + i, sizeof(int));
seq_len_decoder_update = 0;
seq_lens_encoder_update = 0;
LM2GM(&seq_len_decoder_update, seq_lens_decoder + i, sizeof(int));
LM2GM(&seq_lens_encoder_update, seq_lens_encoder + i, sizeof(int));
int64_t topk_ids_update = -1;
LM2GM(&topk_ids_update, topk_ids + i, sizeof(int64_t));
stop_flags_int_sm[i] = 1;
}
}
}
}
sync_all();
sync_cluster();
int stop_sum = 0;
if (cid == 0) {
for (int i = 0; i < max_bsz; i++) {
stop_sum += stop_flags_int_sm[i];
}
// printf("stop_sum : %d\n", stop_sum);
int64_t stop_num;
GM2LM(stop_nums, &stop_num, sizeof(int64_t));
bool not_need_stop_update = stop_sum < static_cast<int>(stop_num);
mfence_lm();
LM2GM(&not_need_stop_update, not_need_stop, sizeof(bool));
}
}
} // namespace plugin
} // namespace xpu3

View File

@@ -0,0 +1,107 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "xpu/plugin.h"
#include "xpu/refactor/impl_public/wrapper_check.h"
#include <algorithm>
#include <numeric>
namespace xpu3 {
namespace plugin {
__attribute__((global)) void
recover_decode_task(bool *stop_flags,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int *block_tables,
bool *is_block_step,
const int bsz,
const int block_num_per_seq,
const int block_size);
} // namespace plugin
} // namespace xpu3
namespace baidu {
namespace xpu {
namespace api {
namespace plugin {
static int xpu3_wrapper(Context *ctx, bool *stop_flags,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int *block_tables,
bool *is_block_step,
const int bsz,
const int block_num_per_seq,
const int block_size) {
using XPU_INT64 = typename XPUIndexType<int64_t>::type;
auto recover_decode_task = xpu3::plugin::recover_decode_task;
recover_decode_task<<<ctx->ncluster(), 64, ctx->xpu_stream>>>(
stop_flags,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_seq_lens_decoder,
block_tables,
is_block_step,
bsz,
block_num_per_seq,
block_size);
return api::SUCCESS;
}
int recover_decode_task(Context *ctx, bool *stop_flags,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int *block_tables,
bool *is_block_step,
const int bsz,
const int block_num_per_seq,
const int block_size) {
WRAPPER_CHECK_CTX(ctx);
WRAPPER_DUMP_FUNCTION_T1(ctx, "recover_decode_task", int);
WRAPPER_DUMP_PARAM5(ctx, stop_flags, seq_lens_this_time,
seq_lens_encoder, seq_lens_decoder, step_seq_lens_decoder);
WRAPPER_DUMP_PARAM2(ctx, block_tables, is_block_step);
WRAPPER_DUMP_PARAM3(ctx, bsz, block_num_per_seq, block_size);
WRAPPER_DUMP(ctx);
if (ctx->dev().type() == api::kCPU) {
assert(false);
}
if (ctx->dev().type() == api::kXPU2 || ctx->dev().type() == api::kXPU3) {
return xpu3_wrapper(ctx, stop_flags,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_seq_lens_decoder,
block_tables,
is_block_step,
bsz,
block_num_per_seq,
block_size);
}
WRAPPER_UNIMPLEMENTED(ctx);
}
} // namespace plugin
} // namespace api
} // namespace xpu
} // namespace baidu

View File

@@ -0,0 +1,149 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "xpu/plugin.h"
#include "xpu/refactor/impl_public/wrapper_check.h"
#include <algorithm>
#include <numeric>
namespace xpu3 {
namespace plugin {
__attribute__((global)) void
update_inputs_v1(bool *not_need_stop,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int64_t *prompt_lens,
int64_t *topk_ids,
int64_t *input_ids,
int *block_tables,
const int64_t *stop_nums,
bool *stop_flags,
bool *is_block_step,
const int64_t *next_tokens,
const int bsz,
const int max_bsz,
const int input_ids_stride,
const int block_num_per_seq,
const int block_size);
} // namespace plugin
} // namespace xpu3
namespace baidu {
namespace xpu {
namespace api {
namespace plugin {
static int xpu3_wrapper(Context *ctx, bool *not_need_stop,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int64_t *prompt_lens,
int64_t *topk_ids,
int64_t *input_ids,
int *block_tables,
const int64_t *stop_nums,
bool *stop_flags,
bool *is_block_step,
const int64_t *next_tokens,
const int bsz,
const int max_bsz,
const int input_ids_stride,
const int block_num_per_seq,
const int block_size) {
using XPU_INT64 = typename XPUIndexType<int64_t>::type;
auto update_inputs_v1 = xpu3::plugin::update_inputs_v1;
// kernel 内要做 reduce只能用 1 个 cluster
update_inputs_v1<<<1, 64, ctx->xpu_stream>>>(
not_need_stop,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_seq_lens_decoder,
reinterpret_cast<XPU_INT64 *>(prompt_lens),
reinterpret_cast<XPU_INT64 *>(topk_ids),
reinterpret_cast<XPU_INT64 *>(input_ids),
block_tables,
reinterpret_cast<const XPU_INT64 *>(stop_nums),
stop_flags,
is_block_step,
reinterpret_cast<const XPU_INT64 *>(next_tokens),
bsz,
max_bsz,
input_ids_stride,
block_num_per_seq,
block_size);
return api::SUCCESS;
}
int update_inputs_v1(Context *ctx, bool *not_need_stop,
int *seq_lens_this_time,
int *seq_lens_encoder,
int *seq_lens_decoder,
int *step_seq_lens_decoder,
int64_t *prompt_lens,
int64_t *topk_ids,
int64_t *input_ids,
int *block_tables,
const int64_t *stop_nums,
bool *stop_flags,
bool *is_block_step,
const int64_t *next_tokens,
const int bsz,
const int max_bsz,
const int input_ids_stride,
const int block_num_per_seq,
const int block_size) {
WRAPPER_CHECK_CTX(ctx);
WRAPPER_DUMP_FUNCTION_T1(ctx, "update_inputs_v1", int);
WRAPPER_DUMP_PARAM5(ctx, not_need_stop, seq_lens_this_time,
seq_lens_encoder, seq_lens_decoder, step_seq_lens_decoder);
WRAPPER_DUMP_PARAM5(ctx, prompt_lens, topk_ids, input_ids, block_tables, stop_nums);
WRAPPER_DUMP_PARAM3(ctx, stop_flags, is_block_step, next_tokens);
WRAPPER_DUMP_PARAM5(ctx, bsz, max_bsz, input_ids_stride, block_num_per_seq, block_size);
WRAPPER_DUMP(ctx);
if (ctx->dev().type() == api::kCPU) {
assert(false);
}
if (ctx->dev().type() == api::kXPU2 || ctx->dev().type() == api::kXPU3) {
return xpu3_wrapper(ctx, not_need_stop,
seq_lens_this_time,
seq_lens_encoder,
seq_lens_decoder,
step_seq_lens_decoder,
prompt_lens,
topk_ids,
input_ids,
block_tables,
stop_nums,
stop_flags,
is_block_step,
next_tokens,
bsz,
max_bsz,
input_ids_stride,
block_num_per_seq,
block_size);
}
WRAPPER_UNIMPLEMENTED(ctx);
}
} // namespace plugin
} // namespace api
} // namespace xpu
} // namespace baidu

View File

@@ -144,6 +144,8 @@ def xpu_setup_ops():
"./ops/get_token_penalty_multi_scores.cc",
"./ops/get_padding_offset.cc",
"./ops/update_inputs.cc",
"./ops/recover_decode_task.cc",
"./ops/update_inputs_v1.cc",
"./ops/get_output.cc",
"./ops/step.cc",
"./ops/get_infer_param.cc",

View File

@@ -22,8 +22,9 @@ import numpy as np
import paddle
from paddle import nn
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.engine.request import Request, RequestType
from fastdeploy.model_executor.forward_meta import ForwardMeta, XPUForwardMeta
from fastdeploy.model_executor.layers.attention import get_attention_backend
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
@@ -33,6 +34,13 @@ from fastdeploy.model_executor.layers.rotary_embedding import get_rope
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import Sampler
from fastdeploy.model_executor.model_loader import get_model_from_loader
from fastdeploy.model_executor.ops.xpu import (
adjust_batch,
get_infer_param,
get_padding_offset,
recover_decode_task,
update_inputs_v1,
)
from fastdeploy.utils import get_logger
from fastdeploy.worker.model_runner_base import ModelRunnerBase
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
@@ -53,11 +61,6 @@ def xpu_pre_process(
max_len = input_ids.shape[1]
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time)
token_num = paddle.sum(seq_lens_this_time)
from fastdeploy.model_executor.ops.xpu import (
adjust_batch,
get_infer_param,
get_padding_offset,
)
(
ids_remove_padding,
@@ -111,6 +114,18 @@ def xpu_pre_process(
) = get_infer_param(seq_lens_encoder, seq_lens_decoder)
# Adjust batch
# print(f"=========================adjust_batch 更新前=========================")
# print(f"ids_remove_padding : {ids_remove_padding}")
# print(f"cum_offsets : {cum_offsets}")
# print(f"xpu_forward_meta.encoder_seq_lod : {xpu_forward_meta.encoder_seq_lod}")
# print(f"xpu_forward_meta.encoder_batch_idx: {xpu_forward_meta.encoder_batch_idx}")
# print(f"xpu_forward_meta.decoder_batch_idx : {xpu_forward_meta.decoder_batch_idx}")
# print(f"xpu_forward_meta.encoder_seq_lod_cpu : {xpu_forward_meta.encoder_seq_lod_cpu}")
# print(f"xpu_forward_meta.encoder_batch_idx_cpu : {xpu_forward_meta.encoder_batch_idx_cpu}")
# print(f"xpu_forward_meta.decoder_batch_idx_cpu : {xpu_forward_meta.decoder_batch_idx_cpu}")
# print(f"xpu_forward_meta.enc_batch : {xpu_forward_meta.encoder_batch_map}")
# print(f"xpu_forward_meta.dec_batch : {xpu_forward_meta.decoder_batch_map}")
adjusted_input = adjust_batch(
ids_remove_padding.reshape([-1, 1]),
cum_offsets,
@@ -125,6 +140,17 @@ def xpu_pre_process(
None, # output_padding_offset
-1, # max_input_length
)
# print(f"=========================adjust_batch 更新后=========================")
# print(f"ids_remove_padding : {ids_remove_padding}")
# print(f"cum_offsets : {cum_offsets}")
# print(f"xpu_forward_meta.encoder_seq_lod : {xpu_forward_meta.encoder_seq_lod}")
# print(f"xpu_forward_meta.encoder_batch_idx: {xpu_forward_meta.encoder_batch_idx}")
# print(f"xpu_forward_meta.decoder_batch_idx : {xpu_forward_meta.decoder_batch_idx}")
# print(f"xpu_forward_meta.encoder_seq_lod_cpu : {xpu_forward_meta.encoder_seq_lod_cpu}")
# print(f"xpu_forward_meta.encoder_batch_idx_cpu : {xpu_forward_meta.encoder_batch_idx_cpu}")
# print(f"xpu_forward_meta.decoder_batch_idx_cpu : {xpu_forward_meta.decoder_batch_idx_cpu}")
# print(f"xpu_forward_meta.enc_batch : {xpu_forward_meta.encoder_batch_map}")
adjusted_input = adjusted_input.squeeze(1)
share_inputs["ids_remove_padding"] = adjusted_input
@@ -160,7 +186,9 @@ def xpu_process_output(
def xpu_post_process(
sampled_token_ids: paddle.Tensor,
model_output: ModelOutputData,
skip_save_output: bool,
share_inputs: Dict[str, paddle.Tensor],
block_size: int = 64,
skip_save_output: bool = False,
) -> None:
""" """
from fastdeploy.model_executor.ops.xpu import (
@@ -194,6 +222,55 @@ def xpu_post_process(
# 2. Update the input buffer of the model
with paddle.framework._no_check_dy2st_diff():
if envs.ENABLE_V1_KVCACHE_SCHEDULER and not skip_save_output:
# print(f"============================================update_inputs_v1 更新前=========================================")
# print(f"model_output.stop_flags : {model_output.stop_flags}")
# print(f"model_output.not_need_stop : {model_output.not_need_stop}")
# print(f"model_output.seq_lens_this_time : {model_output.seq_lens_this_time}")
# print(f"model_output.seq_lens_encoder : {model_output.seq_lens_encoder}")
# print(f"model_output.seq_lens_decoder : {model_output.seq_lens_decoder}")
# print(f"share_inputs['step_seq_lens_decoder'] : {share_inputs['step_seq_lens_decoder']}")
# print(f"share_inputs['prompt_lens'] : {share_inputs['prompt_lens']}")
# print(f"sampled_token_ids : {sampled_token_ids}")
# print(f"model_output.input_ids : {model_output.input_ids}")
# print(f"model_output.stop_nums : {model_output.stop_nums}")
# print(f"model_output.next_tokens : {model_output.next_tokens}")
# print(f"model_output.is_block_step : {model_output.is_block_step}")
# print(f"share_inputs['block_tables'] : {share_inputs['block_tables']}")
# print(f"block_size : {block_size}")
update_inputs_v1(
model_output.stop_flags,
model_output.not_need_stop,
model_output.seq_lens_this_time,
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
share_inputs["step_seq_lens_decoder"],
share_inputs["prompt_lens"],
sampled_token_ids,
model_output.input_ids,
share_inputs["block_tables"],
model_output.stop_nums,
model_output.next_tokens,
model_output.is_block_step,
block_size,
)
# print(f"============================================update_inputs_v1 更新后=========================================")
# print(f"model_output.stop_flags : {model_output.stop_flags}")
# print(f"model_output.not_need_stop : {model_output.not_need_stop}")
# print(f"model_output.seq_lens_this_time : {model_output.seq_lens_this_time}")
# print(f"model_output.seq_lens_encoder : {model_output.seq_lens_encoder}")
# print(f"model_output.seq_lens_decoder : {model_output.seq_lens_decoder}")
# print(f"share_inputs['step_seq_lens_decoder'] : {share_inputs['step_seq_lens_decoder']}")
# print(f"share_inputs['prompt_lens'] : {share_inputs['prompt_lens']}")
# print(f"sampled_token_ids : {sampled_token_ids}")
# print(f"model_output.input_ids : {model_output.input_ids}")
# print(f"model_output.stop_nums : {model_output.stop_nums}")
# print(f"model_output.next_tokens : {model_output.next_tokens}")
# print(f"model_output.is_block_step : {model_output.is_block_step}")
# print(f"share_inputs['block_tables'] : {share_inputs['block_tables']}")
# print(f"block_size : {block_size}")
else:
update_inputs(
model_output.stop_flags,
model_output.not_need_stop,
@@ -290,6 +367,96 @@ class XPUModelRunner(ModelRunnerBase):
# Forward meta store the global meta information of the forward
self.forward_meta: ForwardMeta = None
def insert_tasks_v1(self, req_dicts: List[Request]):
"""
Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
"""
# NOTE(luotingdan): Lazy initialize kv cache
if "caches" not in self.share_inputs:
self.initialize_kv_cache()
req_len = len(req_dicts)
has_prefill_task = False
for i in range(req_len):
request = req_dicts[i]
idx = request.idx
if request.task_type.value == RequestType.PREFILL.value: # prefill task
logger.debug(f"Handle prefill request {request} at idx {idx}")
prefill_start_index = request.prefill_start_index
prefill_end_index = request.prefill_end_index
length = prefill_end_index - prefill_start_index
input_ids = request.prompt_token_ids + request.output_token_ids
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
input_ids[prefill_start_index:prefill_end_index]
)
encoder_block_num = len(request.block_tables)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["prompt_lens"][idx : idx + 1] = len(input_ids)
self.share_inputs["is_block_step"][idx : idx + 1] = False
self.share_inputs["step_idx"][idx : idx + 1] = (
len(request.output_token_ids) if prefill_end_index >= len(input_ids) else 0
)
has_prefill_task = True
elif request.task_type.value == RequestType.DECODE.value: # decode task
logger.debug(f"Handle decode request {request} at idx {idx}")
encoder_block_num = len(request.block_tables)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
continue
else: # preempted task
logger.debug(f"Handle preempted request {request} at idx {idx}")
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["stop_flags"][idx : idx + 1] = True
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 0
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["is_block_step"][idx : idx + 1] = False
continue
if len(request.eos_token_ids) < self.parallel_config.eos_tokens_lens:
request.eos_token_ids.append(request.eos_token_ids[0])
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
"max_tokens", self.model_config.max_model_len
)
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = length
if request.get("seed") is not None:
self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
stop_seqs_num = len(request.get("stop_seqs_len"))
for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
request.stop_seqs_len.append(0)
self.share_inputs["stop_seqs_len"][:] = np.array(request.stop_seqs_len, dtype="int32")
self.share_inputs["stop_seqs"][:stop_seqs_num, : len(request.get("stop_token_ids")[0])] = np.array(
request.get("stop_token_ids"), dtype="int64"
)
if has_prefill_task:
self.share_inputs["not_need_stop"][0] = True
def process_prefill_inputs(self, req_dicts: List[Request]):
"""Process inputs for prefill tasks and update share_inputs buffer"""
req_len = len(req_dicts)
@@ -392,6 +559,8 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["not_need_stop"] = paddle.full(
[1], False, dtype="bool"
@@ -455,8 +624,19 @@ class XPUModelRunner(ModelRunnerBase):
dtype="int32",
)
def _prepare_inputs(self) -> None:
def _prepare_inputs(self, is_dummy_run=False) -> None:
"""prepare the model inputs"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER and not is_dummy_run:
recover_decode_task(
self.share_inputs["stop_flags"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_seq_lens_decoder"],
self.share_inputs["block_tables"],
self.share_inputs["is_block_step"],
self.parallel_config.block_size,
)
self.forward_meta = xpu_pre_process(
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
@@ -655,7 +835,7 @@ class XPUModelRunner(ModelRunnerBase):
intermediate_tensors:
"""
# 1. Prepare inputs of model and decoder.
self._prepare_inputs()
self._prepare_inputs(is_dummy_run=is_dummy_run)
# 2. Padding inputs for cuda grph
@@ -699,6 +879,8 @@ class XPUModelRunner(ModelRunnerBase):
xpu_post_process(
sampled_token_ids=sampler_output.sampled_token_ids,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.parallel_config.block_size,
skip_save_output=is_dummy_run,
)

View File

@@ -20,6 +20,7 @@ from typing import List, Optional
import paddle
from paddle import nn
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.utils import get_logger
@@ -154,6 +155,9 @@ class XpuWorker(WorkerBase):
TODO(gongshaotian):The scheduler should schedule the handling of prefill,
and workers and modelrunners should not perceive it.
"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
self.model_runner.insert_tasks_v1(req_dicts=req_dicts)
else:
self.model_runner.process_prefill_inputs(req_dicts=req_dicts)
def check_health(self) -> bool: