[XPU] Support kvblock centralized management (#3017)

This commit is contained in:
yinwei
2025-07-29 10:40:55 +08:00
committed by GitHub
parent 286802a070
commit f2a528f9ae
10 changed files with 843 additions and 21 deletions

View File

@@ -22,8 +22,9 @@ import numpy as np
import paddle
from paddle import nn
from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.engine.request import Request, RequestType
from fastdeploy.model_executor.forward_meta import ForwardMeta, XPUForwardMeta
from fastdeploy.model_executor.layers.attention import get_attention_backend
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
@@ -33,6 +34,13 @@ from fastdeploy.model_executor.layers.rotary_embedding import get_rope
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import Sampler
from fastdeploy.model_executor.model_loader import get_model_from_loader
from fastdeploy.model_executor.ops.xpu import (
adjust_batch,
get_infer_param,
get_padding_offset,
recover_decode_task,
update_inputs_v1,
)
from fastdeploy.utils import get_logger
from fastdeploy.worker.model_runner_base import ModelRunnerBase
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
@@ -53,11 +61,6 @@ def xpu_pre_process(
max_len = input_ids.shape[1]
cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time)
token_num = paddle.sum(seq_lens_this_time)
from fastdeploy.model_executor.ops.xpu import (
adjust_batch,
get_infer_param,
get_padding_offset,
)
(
ids_remove_padding,
@@ -111,6 +114,18 @@ def xpu_pre_process(
) = get_infer_param(seq_lens_encoder, seq_lens_decoder)
# Adjust batch
# print(f"=========================adjust_batch 更新前=========================")
# print(f"ids_remove_padding : {ids_remove_padding}")
# print(f"cum_offsets : {cum_offsets}")
# print(f"xpu_forward_meta.encoder_seq_lod : {xpu_forward_meta.encoder_seq_lod}")
# print(f"xpu_forward_meta.encoder_batch_idx: {xpu_forward_meta.encoder_batch_idx}")
# print(f"xpu_forward_meta.decoder_batch_idx : {xpu_forward_meta.decoder_batch_idx}")
# print(f"xpu_forward_meta.encoder_seq_lod_cpu : {xpu_forward_meta.encoder_seq_lod_cpu}")
# print(f"xpu_forward_meta.encoder_batch_idx_cpu : {xpu_forward_meta.encoder_batch_idx_cpu}")
# print(f"xpu_forward_meta.decoder_batch_idx_cpu : {xpu_forward_meta.decoder_batch_idx_cpu}")
# print(f"xpu_forward_meta.enc_batch : {xpu_forward_meta.encoder_batch_map}")
# print(f"xpu_forward_meta.dec_batch : {xpu_forward_meta.decoder_batch_map}")
adjusted_input = adjust_batch(
ids_remove_padding.reshape([-1, 1]),
cum_offsets,
@@ -125,6 +140,17 @@ def xpu_pre_process(
None, # output_padding_offset
-1, # max_input_length
)
# print(f"=========================adjust_batch 更新后=========================")
# print(f"ids_remove_padding : {ids_remove_padding}")
# print(f"cum_offsets : {cum_offsets}")
# print(f"xpu_forward_meta.encoder_seq_lod : {xpu_forward_meta.encoder_seq_lod}")
# print(f"xpu_forward_meta.encoder_batch_idx: {xpu_forward_meta.encoder_batch_idx}")
# print(f"xpu_forward_meta.decoder_batch_idx : {xpu_forward_meta.decoder_batch_idx}")
# print(f"xpu_forward_meta.encoder_seq_lod_cpu : {xpu_forward_meta.encoder_seq_lod_cpu}")
# print(f"xpu_forward_meta.encoder_batch_idx_cpu : {xpu_forward_meta.encoder_batch_idx_cpu}")
# print(f"xpu_forward_meta.decoder_batch_idx_cpu : {xpu_forward_meta.decoder_batch_idx_cpu}")
# print(f"xpu_forward_meta.enc_batch : {xpu_forward_meta.encoder_batch_map}")
adjusted_input = adjusted_input.squeeze(1)
share_inputs["ids_remove_padding"] = adjusted_input
@@ -160,7 +186,9 @@ def xpu_process_output(
def xpu_post_process(
sampled_token_ids: paddle.Tensor,
model_output: ModelOutputData,
skip_save_output: bool,
share_inputs: Dict[str, paddle.Tensor],
block_size: int = 64,
skip_save_output: bool = False,
) -> None:
""" """
from fastdeploy.model_executor.ops.xpu import (
@@ -194,17 +222,66 @@ def xpu_post_process(
# 2. Update the input buffer of the model
with paddle.framework._no_check_dy2st_diff():
update_inputs(
model_output.stop_flags,
model_output.not_need_stop,
model_output.seq_lens_this_time,
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.input_ids,
model_output.stop_nums,
sampled_token_ids,
model_output.is_block_step,
)
if envs.ENABLE_V1_KVCACHE_SCHEDULER and not skip_save_output:
# print(f"============================================update_inputs_v1 更新前=========================================")
# print(f"model_output.stop_flags : {model_output.stop_flags}")
# print(f"model_output.not_need_stop : {model_output.not_need_stop}")
# print(f"model_output.seq_lens_this_time : {model_output.seq_lens_this_time}")
# print(f"model_output.seq_lens_encoder : {model_output.seq_lens_encoder}")
# print(f"model_output.seq_lens_decoder : {model_output.seq_lens_decoder}")
# print(f"share_inputs['step_seq_lens_decoder'] : {share_inputs['step_seq_lens_decoder']}")
# print(f"share_inputs['prompt_lens'] : {share_inputs['prompt_lens']}")
# print(f"sampled_token_ids : {sampled_token_ids}")
# print(f"model_output.input_ids : {model_output.input_ids}")
# print(f"model_output.stop_nums : {model_output.stop_nums}")
# print(f"model_output.next_tokens : {model_output.next_tokens}")
# print(f"model_output.is_block_step : {model_output.is_block_step}")
# print(f"share_inputs['block_tables'] : {share_inputs['block_tables']}")
# print(f"block_size : {block_size}")
update_inputs_v1(
model_output.stop_flags,
model_output.not_need_stop,
model_output.seq_lens_this_time,
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
share_inputs["step_seq_lens_decoder"],
share_inputs["prompt_lens"],
sampled_token_ids,
model_output.input_ids,
share_inputs["block_tables"],
model_output.stop_nums,
model_output.next_tokens,
model_output.is_block_step,
block_size,
)
# print(f"============================================update_inputs_v1 更新后=========================================")
# print(f"model_output.stop_flags : {model_output.stop_flags}")
# print(f"model_output.not_need_stop : {model_output.not_need_stop}")
# print(f"model_output.seq_lens_this_time : {model_output.seq_lens_this_time}")
# print(f"model_output.seq_lens_encoder : {model_output.seq_lens_encoder}")
# print(f"model_output.seq_lens_decoder : {model_output.seq_lens_decoder}")
# print(f"share_inputs['step_seq_lens_decoder'] : {share_inputs['step_seq_lens_decoder']}")
# print(f"share_inputs['prompt_lens'] : {share_inputs['prompt_lens']}")
# print(f"sampled_token_ids : {sampled_token_ids}")
# print(f"model_output.input_ids : {model_output.input_ids}")
# print(f"model_output.stop_nums : {model_output.stop_nums}")
# print(f"model_output.next_tokens : {model_output.next_tokens}")
# print(f"model_output.is_block_step : {model_output.is_block_step}")
# print(f"share_inputs['block_tables'] : {share_inputs['block_tables']}")
# print(f"block_size : {block_size}")
else:
update_inputs(
model_output.stop_flags,
model_output.not_need_stop,
model_output.seq_lens_this_time,
model_output.seq_lens_encoder,
model_output.seq_lens_decoder,
model_output.input_ids,
model_output.stop_nums,
sampled_token_ids,
model_output.is_block_step,
)
# 3. Transmit the model's output and stop generation signal via message queue.
# In the future, we will abandon this approach.
if not skip_save_output:
@@ -290,6 +367,96 @@ class XPUModelRunner(ModelRunnerBase):
# Forward meta store the global meta information of the forward
self.forward_meta: ForwardMeta = None
def insert_tasks_v1(self, req_dicts: List[Request]):
"""
Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
"""
# NOTE(luotingdan): Lazy initialize kv cache
if "caches" not in self.share_inputs:
self.initialize_kv_cache()
req_len = len(req_dicts)
has_prefill_task = False
for i in range(req_len):
request = req_dicts[i]
idx = request.idx
if request.task_type.value == RequestType.PREFILL.value: # prefill task
logger.debug(f"Handle prefill request {request} at idx {idx}")
prefill_start_index = request.prefill_start_index
prefill_end_index = request.prefill_end_index
length = prefill_end_index - prefill_start_index
input_ids = request.prompt_token_ids + request.output_token_ids
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
input_ids[prefill_start_index:prefill_end_index]
)
encoder_block_num = len(request.block_tables)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["prompt_lens"][idx : idx + 1] = len(input_ids)
self.share_inputs["is_block_step"][idx : idx + 1] = False
self.share_inputs["step_idx"][idx : idx + 1] = (
len(request.output_token_ids) if prefill_end_index >= len(input_ids) else 0
)
has_prefill_task = True
elif request.task_type.value == RequestType.DECODE.value: # decode task
logger.debug(f"Handle decode request {request} at idx {idx}")
encoder_block_num = len(request.block_tables)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
continue
else: # preempted task
logger.debug(f"Handle preempted request {request} at idx {idx}")
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["stop_flags"][idx : idx + 1] = True
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 0
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["is_block_step"][idx : idx + 1] = False
continue
if len(request.eos_token_ids) < self.parallel_config.eos_tokens_lens:
request.eos_token_ids.append(request.eos_token_ids[0])
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
"max_tokens", self.model_config.max_model_len
)
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = length
if request.get("seed") is not None:
self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
stop_seqs_num = len(request.get("stop_seqs_len"))
for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
request.stop_seqs_len.append(0)
self.share_inputs["stop_seqs_len"][:] = np.array(request.stop_seqs_len, dtype="int32")
self.share_inputs["stop_seqs"][:stop_seqs_num, : len(request.get("stop_token_ids")[0])] = np.array(
request.get("stop_token_ids"), dtype="int64"
)
if has_prefill_task:
self.share_inputs["not_need_stop"][0] = True
def process_prefill_inputs(self, req_dicts: List[Request]):
"""Process inputs for prefill tasks and update share_inputs buffer"""
req_len = len(req_dicts)
@@ -392,6 +559,8 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["not_need_stop"] = paddle.full(
[1], False, dtype="bool"
@@ -455,8 +624,19 @@ class XPUModelRunner(ModelRunnerBase):
dtype="int32",
)
def _prepare_inputs(self) -> None:
def _prepare_inputs(self, is_dummy_run=False) -> None:
"""prepare the model inputs"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER and not is_dummy_run:
recover_decode_task(
self.share_inputs["stop_flags"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_seq_lens_decoder"],
self.share_inputs["block_tables"],
self.share_inputs["is_block_step"],
self.parallel_config.block_size,
)
self.forward_meta = xpu_pre_process(
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
@@ -655,7 +835,7 @@ class XPUModelRunner(ModelRunnerBase):
intermediate_tensors:
"""
# 1. Prepare inputs of model and decoder.
self._prepare_inputs()
self._prepare_inputs(is_dummy_run=is_dummy_run)
# 2. Padding inputs for cuda grph
@@ -699,6 +879,8 @@ class XPUModelRunner(ModelRunnerBase):
xpu_post_process(
sampled_token_ids=sampler_output.sampled_token_ids,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.parallel_config.block_size,
skip_save_output=is_dummy_run,
)