[OPs] Universal optimization and Fix early_stop cuda 700 (#3375)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled

* delete nonzero

* delete setup_ops_base.py

* check if

* check gcp infer_seed.cpu()

* fix repetition_early_stopper_kernel cuda 700
This commit is contained in:
chen
2025-08-14 22:40:44 +08:00
committed by GitHub
parent 09c979f3dd
commit f0f00a6025
15 changed files with 102 additions and 71 deletions

View File

@@ -90,10 +90,10 @@ class RepetitionEarlyStopper(EarlyStopper):
)
B, W = self.trunc_scores.shape
V = probs.shape[1]
real_bsz, V = probs.shape
BLOCK_W = triton.next_power_of_2(W)
grid = (B,)
grid = (real_bsz,)
repetition_early_stopper_kernel[grid](
self.trunc_scores,
probs,

View File

@@ -42,7 +42,9 @@ class SamplingMetadata:
top_p: paddle.Tensor
top_k: Optional[paddle.Tensor] = None
top_k_list: Optional[list] = None
min_p: Optional[paddle.Tensor] = None
min_p_list: Optional[list] = None
seed: Optional[paddle.Tensor] = None
max_num_logprobs: Optional[int] = None
enable_early_stop: Optional[int] = False

View File

@@ -29,6 +29,7 @@ def top_k_top_p_sampling(
x: paddle.Tensor,
top_p: paddle.Tensor,
top_k: Optional[paddle.Tensor] = None,
top_k_list: Optional[list] = None,
threshold: Optional[paddle.Tensor] = None,
topp_seed: Optional[paddle.Tensor] = None,
seed: int = -1,
@@ -64,7 +65,7 @@ def top_k_top_p_sampling(
if top_p_class == "air":
_, ids = air_top_p_sampling(x, top_p, threshold, topp_seed, seed=seed, k=k, mode=mode)
elif top_p_class == "rejection":
ids = rejection_top_p_sampling(x, top_p, top_k, seed, order)
ids = rejection_top_p_sampling(x, top_p, top_k, top_k_list, seed, order)
_ = None
elif top_p_class == "base_non_truncated":
_, ids = paddle.tensor.top_p_sampling(
@@ -121,6 +122,7 @@ def rejection_top_p_sampling(
x: paddle.Tensor,
top_p: paddle.Tensor,
top_k: paddle.Tensor,
top_k_list: list,
seed: int = -1,
order: Literal["top_k_first", "joint"] = "top_k_first",
) -> paddle.Tensor:
@@ -139,7 +141,7 @@ def rejection_top_p_sampling(
top_k_renorm_probs,
)
if paddle.count_nonzero(top_k) == 0:
if not any(x > 0 for x in top_k_list):
ids = rejection_top_p_sampling(
x,
top_p,
@@ -170,11 +172,12 @@ def rejection_top_p_sampling(
def min_p_sampling(
probs: paddle.tensor,
min_p_arr: Optional[paddle.Tensor],
min_p_arr_cpu: Optional[list],
) -> tuple[paddle.Tensor, paddle.Tensor]:
"""
min_p_sampling
"""
if paddle.count_nonzero(min_p_arr) == 0:
if not any(x > 0 for x in min_p_arr_cpu):
return probs
else:
if current_platform.is_cuda():

View File

@@ -281,10 +281,13 @@ class Sampler(nn.Layer):
probs = F.softmax(logits)
probs = min_p_sampling(probs, sampling_metadata.min_p)
probs = min_p_sampling(probs, sampling_metadata.min_p, sampling_metadata.min_p_list)
_, next_tokens = top_k_top_p_sampling(
probs, sampling_metadata.top_p, sampling_metadata.top_k, seed=sampling_metadata.seed[0, 0]
probs,
sampling_metadata.top_p,
sampling_metadata.top_k,
sampling_metadata.top_k_list,
seed=sampling_metadata.seed[0, 0],
)
logprobs_tensors = (

View File

@@ -19,7 +19,6 @@ from fastdeploy.import_ops import import_custom_ops
PACKAGE = "fastdeploy.model_executor.ops.gpu"
import_custom_ops(PACKAGE, "..base.fastdeploy_base_ops", globals())
import_custom_ops(PACKAGE, ".fastdeploy_ops", globals())

View File

@@ -17,7 +17,6 @@ from fastdeploy.import_ops import import_custom_ops
PACKAGE = "fastdeploy.model_executor.ops.iluvatar"
import_custom_ops(PACKAGE, "..base.fastdeploy_base_ops", globals())
import_custom_ops(PACKAGE, ".fastdeploy_ops", globals())
from .moe_ops import iluvatar_moe_expert_ffn as moe_expert_ffn # noqa: F401

View File

@@ -94,7 +94,7 @@ class GCUModelRunner(ModelRunnerBase):
shape=[self.parallel_config.max_num_seqs, 1],
fill_value=4,
dtype="int64",
)
).cpu()
self.restore_chunked_prefill_request = dict()
# Initialize attention Backend
@@ -239,7 +239,9 @@ class GCUModelRunner(ModelRunnerBase):
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = get_attr_from_request(request, "top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = get_attr_from_request(request, "temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = get_attr_from_request(
@@ -361,7 +363,9 @@ class GCUModelRunner(ModelRunnerBase):
self.share_inputs["eos_token_id"] = paddle.full([self.model_config.eos_tokens_lens, 1], 0, dtype="int64")
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], self.model_config.top_p, dtype="float32")
self.share_inputs["top_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["top_k_list"] = [0] * max_num_seqs
self.share_inputs["min_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
self.share_inputs["min_p_list"] = [0.0] * max_num_seqs
self.share_inputs["temperature"] = paddle.full(
[max_num_seqs, 1], self.model_config.temperature, dtype="float32"
)
@@ -408,7 +412,7 @@ class GCUModelRunner(ModelRunnerBase):
self.share_inputs["need_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["need_block_len"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["used_list_len"] = paddle.full([max_num_seqs], 0, dtype="int32")
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64").cpu()
self.share_inputs["first_token_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
self.share_inputs["ori_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
@@ -539,7 +543,9 @@ class GCUModelRunner(ModelRunnerBase):
temperature=self.share_inputs["temperature"],
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
top_k_list=self.share_inputs["top_k_list"],
min_p=self.share_inputs["min_p"],
min_p_list=self.share_inputs["min_p_list"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],

View File

@@ -138,7 +138,7 @@ class GPUModelRunner(ModelRunnerBase):
shape=[self.parallel_config.max_num_seqs, 1],
fill_value=4,
dtype="int64",
)
).cpu()
self.restore_chunked_prefill_request = dict()
@@ -315,6 +315,10 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
@@ -478,7 +482,9 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = get_attr_from_request(request, "top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = get_attr_from_request(request, "temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = get_attr_from_request(
@@ -612,7 +618,9 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["eos_token_id"] = paddle.full([self.model_config.eos_tokens_lens, 1], 0, dtype="int64")
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], self.model_config.top_p, dtype="float32")
self.share_inputs["top_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["top_k_list"] = [0] * max_num_seqs
self.share_inputs["min_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
self.share_inputs["min_p_list"] = [0.0] * max_num_seqs
self.share_inputs["temperature"] = paddle.full(
[max_num_seqs, 1], self.model_config.temperature, dtype="float32"
)
@@ -661,7 +669,7 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["need_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["need_block_len"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["used_list_len"] = paddle.full([max_num_seqs], 0, dtype="int32")
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64").cpu()
self.share_inputs["first_token_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
self.share_inputs["ori_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
@@ -830,7 +838,9 @@ class GPUModelRunner(ModelRunnerBase):
temperature=self.share_inputs["temperature"],
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
top_k_list=self.share_inputs["top_k_list"],
min_p=self.share_inputs["min_p"],
min_p_list=self.share_inputs["min_p_list"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],

View File

@@ -361,7 +361,7 @@ class XPUModelRunner(ModelRunnerBase):
shape=[self.parallel_config.max_num_seqs, 1],
fill_value=4,
dtype="int64",
)
).cpu()
# Initialize attention Backend
# Note(gonshaotian): Currently, all attention layers share one attention backend instance.
@@ -435,6 +435,10 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
@@ -476,7 +480,9 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs["pre_ids"][idx : idx + 1] = -1
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
@@ -547,7 +553,9 @@ class XPUModelRunner(ModelRunnerBase):
self.share_inputs["eos_token_id"] = paddle.full([self.model_config.eos_tokens_lens, 1], 0, dtype="int64")
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], self.model_config.top_p, dtype="float32")
self.share_inputs["top_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["top_k_list"] = [0] * max_num_seqs
self.share_inputs["min_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
self.share_inputs["min_p_list"] = [0.0] * max_num_seqs
self.share_inputs["temperature"] = paddle.full(
[max_num_seqs, 1], self.model_config.temperature, dtype="float32"
)
@@ -674,7 +682,9 @@ class XPUModelRunner(ModelRunnerBase):
temperature=self.share_inputs["temperature"],
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
top_k_list=self.share_inputs["top_k_list"],
min_p=self.share_inputs["min_p"],
min_p_list=self.share_inputs["min_p_list"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],