[Benchmark] Add precision evaluation api from benchmark (#1310)

* [Benchmark] Init benchmark precision api

* [Benchmark] Init benchmark precision api

* [Benchmark] Add benchmark precision api

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Add SplitDataLine utils

* [Benchmark] Add LexSortByXY func

* [Benchmark] Add LexSortByXY func

* [Benchmark] Add LexSortDetectionResultByXY func

* [Benchmark] Add LexSortDetectionResultByXY func

* [Benchmark] Add tensor diff presicion test

* [Benchmark] fixed conflicts

* [Benchmark] fixed calc tensor diff

* fixed build bugs

* fixed ci bugs when WITH_TESTING=ON
This commit is contained in:
DefTruth
2023-02-16 17:16:14 +08:00
committed by GitHub
parent bdfb7b0008
commit ee85a3cade
14 changed files with 575 additions and 29 deletions

5
benchmark/cpp/CMakeLists.txt Executable file → Normal file
View File

@@ -11,13 +11,16 @@ include_directories(${FASTDEPLOY_INCS})
add_executable(benchmark_yolov5 ${PROJECT_SOURCE_DIR}/benchmark_yolov5.cc)
add_executable(benchmark_ppyolov8 ${PROJECT_SOURCE_DIR}/benchmark_ppyolov8.cc)
add_executable(benchmark_ppcls ${PROJECT_SOURCE_DIR}/benchmark_ppcls.cc)
add_executable(benchmark_precision_ppyolov8 ${PROJECT_SOURCE_DIR}/benchmark_precision_ppyolov8.cc)
if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_ppyolov8 ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_ppcls ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_precision_ppyolov8 ${FASTDEPLOY_LIBS} gflags pthread)
else()
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags)
target_link_libraries(benchmark_ppyolov8 ${FASTDEPLOY_LIBS} gflags)
target_link_libraries(benchmark_ppcls ${FASTDEPLOY_LIBS} gflags pthread)
target_link_libraries(benchmark_ppcls ${FASTDEPLOY_LIBS} gflags)
target_link_libraries(benchmark_precision_ppyolov8 ${FASTDEPLOY_LIBS} gflags)
endif()

0
benchmark/cpp/benchmark_ppyolov8.cc Executable file → Normal file
View File

View File

@@ -0,0 +1,87 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
namespace vision = fastdeploy::vision;
namespace benchmark = fastdeploy::benchmark;
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
auto model_file = FLAGS_model + sep + "model.pdmodel";
auto params_file = FLAGS_model + sep + "model.pdiparams";
auto config_file = FLAGS_model + sep + "infer_cfg.yml";
auto model_ppyolov8 = vision::detection::PaddleYOLOv8(model_file, params_file,
config_file, option);
vision::DetectionResult res;
// Run once at least
model_ppyolov8.Predict(im, &res);
// 1. Test result diff
std::cout << "=============== Test result diff =================\n";
// Save result to -> disk.
std::string det_result_path = "ppyolov8_result.txt";
benchmark::ResultManager::SaveDetectionResult(res, det_result_path);
// Load result from <- disk.
vision::DetectionResult res_loaded;
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path);
// Calculate diff between two results.
auto det_diff =
benchmark::ResultManager::CalculateDiffStatis(&res, &res_loaded);
std::cout << "diff: mean=" << det_diff.mean << ",max=" << det_diff.max
<< ",min=" << det_diff.min << std::endl;
// 2. Test tensor diff
std::cout << "=============== Test tensor diff =================\n";
std::vector<vision::DetectionResult> bacth_res;
std::vector<fastdeploy::FDTensor> input_tensors, output_tensors;
std::vector<cv::Mat> imgs;
imgs.push_back(im);
std::vector<vision::FDMat> fd_images = vision::WrapMat(imgs);
model_ppyolov8.GetPreprocessor().Run(&fd_images, &input_tensors);
input_tensors[0].name = "image";
input_tensors[1].name = "scale_factor";
input_tensors[2].name = "im_shape";
input_tensors.pop_back();
model_ppyolov8.Infer(input_tensors, &output_tensors);
model_ppyolov8.GetPostprocessor().Run(output_tensors, &bacth_res);
// Save tensor to -> disk.
auto& tensor_dump = output_tensors[0];
std::string det_tensor_path = "ppyolov8_tensor.txt";
benchmark::ResultManager::SaveFDTensor(tensor_dump, det_tensor_path);
// Load tensor from <- disk.
fastdeploy::FDTensor tensor_loaded;
benchmark::ResultManager::LoadFDTensor(&tensor_loaded, det_tensor_path);
// Calculate diff between two tensors.
auto det_tensor_diff = benchmark::ResultManager::CalculateDiffStatis(
&tensor_dump, &tensor_loaded);
std::cout << "diff: mean=" << det_tensor_diff.mean
<< ",max=" << det_tensor_diff.max << ",min=" << det_tensor_diff.min
<< std::endl;
// 3. Run profiling
BENCHMARK_MODEL(model_ppyolov8, model_ppyolov8.Predict(im, &res))
auto vis_im = vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0;
}

0
benchmark/cpp/benchmark_yolov5.cc Executable file → Normal file
View File

View File

@@ -41,6 +41,7 @@ function(fastdeploy_summary)
message(STATUS " ENABLE_OPENVINO_BACKEND : ${ENABLE_OPENVINO_BACKEND}")
message(STATUS " ENABLE_BENCHMARK : ${ENABLE_BENCHMARK}")
message(STATUS " WITH_GPU : ${WITH_GPU}")
message(STATUS " WITH_TESTING : ${WITH_TESTING}")
message(STATUS " WITH_ASCEND : ${WITH_ASCEND}")
message(STATUS " WITH_TIMVX : ${WITH_TIMVX}")
message(STATUS " WITH_KUNLUNXIN : ${WITH_KUNLUNXIN}")

334
fastdeploy/benchmark/utils.cc Executable file → Normal file
View File

@@ -19,10 +19,15 @@
#include <cmath>
#include "fastdeploy/benchmark/utils.h"
#include "fastdeploy/utils/path.h"
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
#include "fastdeploy/vision/utils/utils.h"
#endif
namespace fastdeploy {
namespace benchmark {
#if defined(ENABLE_BENCHMARK)
std::string Strip(const std::string& str, char ch) {
int i = 0;
while (str[i] == ch) {
@@ -35,8 +40,7 @@ std::string Strip(const std::string& str, char ch) {
return str.substr(i, j + 1 - i);
}
void Split(const std::string& s, std::vector<std::string>& tokens,
char delim) {
void Split(const std::string& s, std::vector<std::string>& tokens, char delim) {
tokens.clear();
size_t lastPos = s.find_first_not_of(delim, 0);
size_t pos = s.find(delim, lastPos);
@@ -146,6 +150,332 @@ std::string ResourceUsageMonitor::GetCurrentGpuMemoryInfo(int device_id) {
#endif
return result;
}
#endif // ENABLE_BENCHMARK
/// Utils for precision evaluation
#if defined(ENABLE_BENCHMARK)
static const char KEY_VALUE_SEP = '#';
static const char VALUE_SEP = ',';
std::vector<std::string> ReadLines(const std::string& path) {
std::ifstream fin(path);
std::vector<std::string> lines;
std::string line;
if (fin.is_open()) {
while (getline(fin, line)) {
lines.push_back(line);
}
} else {
FDERROR << "Failed to open file " << path << std::endl;
std::abort();
}
fin.close();
return lines;
}
std::map<std::string, std::vector<std::string>> SplitDataLine(
const std::string& data_line) {
std::map<std::string, std::vector<std::string>> dict;
std::vector<std::string> tokens, value_tokens;
Split(data_line, tokens, KEY_VALUE_SEP);
std::string key = tokens[0];
std::string value = tokens[1];
Split(value, value_tokens, VALUE_SEP);
dict[key] = value_tokens;
return dict;
}
bool ResultManager::SaveFDTensor(const FDTensor& tensor,
const std::string& path) {
if (tensor.CpuData() == nullptr || tensor.Numel() <= 0) {
FDERROR << "Input tensor is empty!" << std::endl;
return false;
}
std::ofstream fs(path, std::ios::out);
if (!fs.is_open()) {
FDERROR << "Fail to open file:" << path << std::endl;
return false;
}
fs.precision(20);
if (tensor.Dtype() != FDDataType::FP32 &&
tensor.Dtype() != FDDataType::INT32 &&
tensor.Dtype() != FDDataType::INT64) {
FDERROR << "Only support FP32/INT32/INT64 now, but got "
<< Str(tensor.dtype) << std::endl;
return false;
}
// name
fs << "name" << KEY_VALUE_SEP << tensor.name << "\n";
// shape
fs << "shape" << KEY_VALUE_SEP;
for (int i = 0; i < tensor.shape.size(); ++i) {
if (i < tensor.shape.size() - 1) {
fs << tensor.shape[i] << VALUE_SEP;
} else {
fs << tensor.shape[i];
}
}
fs << "\n";
// dtype
fs << "dtype" << KEY_VALUE_SEP << Str(tensor.dtype) << "\n";
// data
fs << "data" << KEY_VALUE_SEP;
const void* data_ptr = tensor.CpuData();
for (int i = 0; i < tensor.Numel(); ++i) {
if (tensor.Dtype() == FDDataType::INT64) {
if (i < tensor.Numel() - 1) {
fs << (static_cast<const int64_t*>(data_ptr))[i] << VALUE_SEP;
} else {
fs << (static_cast<const int64_t*>(data_ptr))[i];
}
} else if (tensor.Dtype() == FDDataType::INT32) {
if (i < tensor.Numel() - 1) {
fs << (static_cast<const int32_t*>(data_ptr))[i] << VALUE_SEP;
} else {
fs << (static_cast<const int32_t*>(data_ptr))[i];
}
} else { // FP32
if (i < tensor.Numel() - 1) {
fs << (static_cast<const float*>(data_ptr))[i] << VALUE_SEP;
} else {
fs << (static_cast<const float*>(data_ptr))[i];
}
}
}
fs << "\n";
fs.close();
return true;
}
bool ResultManager::LoadFDTensor(FDTensor* tensor, const std::string& path) {
if (!CheckFileExists(path)) {
FDERROR << "Can't found file from" << path << std::endl;
return false;
}
auto lines = ReadLines(path);
std::map<std::string, std::vector<std::string>> data;
// name
data = SplitDataLine(lines[0]);
tensor->name = data.begin()->first;
// shape
data = SplitDataLine(lines[1]);
tensor->shape.clear();
for (const auto& s : data.begin()->second) {
tensor->shape.push_back(std::stol(s));
}
// dtype
data = SplitDataLine(lines[2]);
if (data.begin()->second.at(0) == Str(FDDataType::INT64)) {
tensor->dtype = FDDataType::INT64;
} else if (data.begin()->second.at(0) == Str(FDDataType::INT32)) {
tensor->dtype = FDDataType::INT32;
} else if (data.begin()->second.at(0) == Str(FDDataType::FP32)) {
tensor->dtype = FDDataType::FP32;
} else {
FDERROR << "Only support FP32/INT64/INT32 now, but got "
<< data.begin()->second.at(0) << std::endl;
return false;
}
// data
data = SplitDataLine(lines[3]);
tensor->Allocate(tensor->shape, tensor->dtype, tensor->name);
if (tensor->dtype == FDDataType::INT64) {
int64_t* mutable_data_ptr = static_cast<int64_t*>(tensor->MutableData());
for (int i = 0; i < data.begin()->second.size(); ++i) {
mutable_data_ptr[i] = std::stol(data.begin()->second[i]);
}
} else if (tensor->dtype == FDDataType::INT32) {
int32_t* mutable_data_ptr = static_cast<int32_t*>(tensor->MutableData());
for (int i = 0; i < data.begin()->second.size(); ++i) {
mutable_data_ptr[i] = std::stoi(data.begin()->second[i]);
}
} else { // FP32
float* mutable_data_ptr = static_cast<float*>(tensor->MutableData());
for (int i = 0; i < data.begin()->second.size(); ++i) {
mutable_data_ptr[i] = std::stof(data.begin()->second[i]);
}
}
return true;
}
TensorDiff ResultManager::CalculateDiffStatis(FDTensor* lhs, FDTensor* rhs) {
if (lhs->Numel() != rhs->Numel() || lhs->Dtype() != rhs->Dtype()) {
FDASSERT(false,
"The size and dtype of input FDTensor must be equal!"
" But got size %d, %d, dtype %s, %s",
lhs->Numel(), rhs->Numel(), Str(lhs->Dtype()).c_str(),
Str(rhs->Dtype()).c_str())
}
FDDataType dtype = lhs->Dtype();
int numel = lhs->Numel();
if (dtype != FDDataType::FP32 && dtype != FDDataType::INT64 &&
dtype != FDDataType::INT32) {
FDASSERT(false, "Only support FP32/INT64/INT32 now, but got %s",
Str(dtype).c_str())
}
if (dtype == FDDataType::INT64) {
std::vector<int64_t> tensor_diff(numel);
const int64_t* lhs_data_ptr = static_cast<const int64_t*>(lhs->CpuData());
const int64_t* rhs_data_ptr = static_cast<const int64_t*>(rhs->CpuData());
for (int i = 0; i < numel; ++i) {
tensor_diff[i] = lhs_data_ptr[i] - rhs_data_ptr[i];
}
TensorDiff diff;
CalculateStatisInfo<int64_t>(tensor_diff.data(), numel, &(diff.mean),
&(diff.max), &(diff.min));
return diff;
} else if (dtype == FDDataType::INT32) {
std::vector<int32_t> tensor_diff(numel);
const int32_t* lhs_data_ptr = static_cast<const int32_t*>(lhs->CpuData());
const int32_t* rhs_data_ptr = static_cast<const int32_t*>(rhs->CpuData());
for (int i = 0; i < numel; ++i) {
tensor_diff[i] = lhs_data_ptr[i] - rhs_data_ptr[i];
}
TensorDiff diff;
CalculateStatisInfo<float>(tensor_diff.data(), numel, &(diff.mean),
&(diff.max), &(diff.min));
return diff;
} else { // FP32
std::vector<float> tensor_diff(numel);
const float* lhs_data_ptr = static_cast<const float*>(lhs->CpuData());
const float* rhs_data_ptr = static_cast<const float*>(rhs->CpuData());
for (int i = 0; i < numel; ++i) {
tensor_diff[i] = lhs_data_ptr[i] - rhs_data_ptr[i];
}
TensorDiff diff;
CalculateStatisInfo<float>(tensor_diff.data(), numel, &(diff.mean),
&(diff.max), &(diff.min));
return diff;
}
}
#if defined(ENABLE_VISION)
bool ResultManager::SaveDetectionResult(const vision::DetectionResult& res,
const std::string& path) {
if (res.boxes.empty()) {
FDERROR << "DetectionResult can not be empty!" << std::endl;
return false;
}
std::ofstream fs(path, std::ios::out);
if (!fs.is_open()) {
FDERROR << "Fail to open file:" << path << std::endl;
return false;
}
fs.precision(20);
// boxes
fs << "boxes" << KEY_VALUE_SEP;
for (int i = 0; i < res.boxes.size(); ++i) {
for (int j = 0; j < 4; ++j) {
if ((i == res.boxes.size() - 1) && (j == 3)) {
fs << res.boxes[i][j];
} else {
fs << res.boxes[i][j] << VALUE_SEP;
}
}
}
fs << "\n";
// scores
fs << "scores" << KEY_VALUE_SEP;
for (int i = 0; i < res.scores.size(); ++i) {
if (i < res.scores.size() - 1) {
fs << res.scores[i] << VALUE_SEP;
} else {
fs << res.scores[i];
}
}
fs << "\n";
// label_ids
fs << "label_ids" << KEY_VALUE_SEP;
for (int i = 0; i < res.label_ids.size(); ++i) {
if (i < res.label_ids.size() - 1) {
fs << res.label_ids[i] << VALUE_SEP;
} else {
fs << res.label_ids[i];
}
}
fs << "\n";
// TODO(qiuyanjun): dump masks
fs.close();
return true;
}
bool ResultManager::LoadDetectionResult(vision::DetectionResult* res,
const std::string& path) {
if (!CheckFileExists(path)) {
FDERROR << "Can't found file from" << path << std::endl;
return false;
}
auto lines = ReadLines(path);
std::map<std::string, std::vector<std::string>> data;
// boxes
data = SplitDataLine(lines[0]);
int boxes_num = data.begin()->second.size() / 4;
res->Resize(boxes_num);
for (int i = 0; i < boxes_num; ++i) {
res->boxes[i][0] = std::stof(data.begin()->second[i * 4 + 0]);
res->boxes[i][1] = std::stof(data.begin()->second[i * 4 + 1]);
res->boxes[i][2] = std::stof(data.begin()->second[i * 4 + 2]);
res->boxes[i][3] = std::stof(data.begin()->second[i * 4 + 3]);
}
// scores
data = SplitDataLine(lines[1]);
for (int i = 0; i < data.begin()->second.size(); ++i) {
res->scores[i] = std::stof(data.begin()->second[i]);
}
// label_ids
data = SplitDataLine(lines[2]);
for (int i = 0; i < data.begin()->second.size(); ++i) {
res->label_ids[i] = std::stoi(data.begin()->second[i]);
}
// TODO(qiuyanjun): load masks
return true;
}
DetectionDiff ResultManager::CalculateDiffStatis(vision::DetectionResult* lhs,
vision::DetectionResult* rhs,
float score_threshold) {
// lex sort by x(w) & y(h)
vision::utils::LexSortDetectionResultByXY(lhs);
vision::utils::LexSortDetectionResultByXY(rhs);
// get value diff & trunc it by score_threshold
const int boxes_num = std::min(lhs->boxes.size(), rhs->boxes.size());
std::vector<float> boxes_diff;
std::vector<float> scores_diff;
std::vector<int32_t> labels_diff;
// TODO(qiuyanjun): process the diff of masks.
for (int i = 0; i < boxes_num; ++i) {
if (lhs->scores[i] > score_threshold && rhs->scores[i] > score_threshold) {
scores_diff.push_back(lhs->scores[i] - rhs->scores[i]);
labels_diff.push_back(lhs->label_ids[i] - rhs->label_ids[i]);
boxes_diff.push_back(lhs->boxes[i][0] - rhs->boxes[i][0]);
boxes_diff.push_back(lhs->boxes[i][1] - rhs->boxes[i][1]);
boxes_diff.push_back(lhs->boxes[i][2] - rhs->boxes[i][2]);
boxes_diff.push_back(lhs->boxes[i][3] - rhs->boxes[i][3]);
}
}
FDASSERT(boxes_diff.size() > 0,
"Can't get any valid boxes while score_threshold is %f, "
"The boxes.size of lhs is %d, the boxes.size of rhs is %d",
score_threshold, lhs->boxes.size(), rhs->boxes.size())
DetectionDiff diff;
CalculateStatisInfo<float>(boxes_diff.data(), boxes_diff.size(),
&(diff.boxes.mean), &(diff.boxes.max),
&(diff.boxes.min));
CalculateStatisInfo<float>(scores_diff.data(), scores_diff.size(),
&(diff.scores.mean), &(diff.scores.max),
&(diff.scores.min));
CalculateStatisInfo<int32_t>(labels_diff.data(), labels_diff.size(),
&(diff.labels.mean), &(diff.labels.max),
&(diff.labels.min));
diff.mean = diff.boxes.mean;
diff.max = diff.boxes.max;
diff.min = diff.boxes.min;
return diff;
}
#endif // ENABLE_VISION
#endif // ENABLE_BENCHMARK
} // namespace benchmark
} // namespace fastdeploy

View File

@@ -16,9 +16,15 @@
#include <memory>
#include <thread> // NOLINT
#include "fastdeploy/utils/utils.h"
#include "fastdeploy/core/fd_tensor.h"
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
#include "fastdeploy/vision/common/result.h"
#endif
namespace fastdeploy {
namespace benchmark {
#if defined(ENABLE_BENCHMARK)
/*! @brief ResourceUsageMonitor object used when to collect memory info.
*/
class FASTDEPLOY_DECL ResourceUsageMonitor {
@@ -86,5 +92,48 @@ FASTDEPLOY_DECL void Split(const std::string& s,
std::vector<std::string>& tokens,
char delim = ' ');
/// Diff values for precision evaluation
struct FASTDEPLOY_DECL BaseDiff {};
struct FASTDEPLOY_DECL EvalStatis {
double mean = -1.0;
double min = -1.0;
double max = -1.0;
};
struct FASTDEPLOY_DECL TensorDiff: public BaseDiff, public EvalStatis {};
#if defined(ENABLE_VISION)
struct FASTDEPLOY_DECL DetectionDiff: public BaseDiff, public EvalStatis {
EvalStatis boxes;
EvalStatis scores;
EvalStatis labels;
};
#endif // ENABLE_VISION
#endif // ENABLE_BENCHMARK
/// Utils for precision evaluation
struct FASTDEPLOY_DECL ResultManager {
#if defined(ENABLE_BENCHMARK)
/// Save & Load functions for FDTensor result.
static bool SaveFDTensor(const FDTensor& tensor, const std::string& path);
static bool LoadFDTensor(FDTensor* tensor, const std::string& path);
/// Calculate diff value between two FDTensor results.
static TensorDiff CalculateDiffStatis(FDTensor* lhs,
FDTensor* rhs);
#if defined(ENABLE_VISION)
/// Save & Load functions for basic results.
static bool SaveDetectionResult(const vision::DetectionResult& res,
const std::string& path);
static bool LoadDetectionResult(vision::DetectionResult* res,
const std::string& path);
/// Calculate diff value between two basic results.
static DetectionDiff CalculateDiffStatis(vision::DetectionResult* lhs,
vision::DetectionResult* rhs,
float score_threshold = 0.3f);
#endif // ENABLE_VISION
#endif // ENABLE_BENCHMARK
};
} // namespace benchmark
} // namespace fastdeploy

View File

@@ -211,25 +211,6 @@ bool FDTensor::Reshape(const std::vector<int64_t>& new_shape) {
return true;
}
template <typename T>
void CalculateStatisInfo(const void* src_ptr, int size, double* mean,
double* max, double* min) {
const T* ptr = static_cast<const T*>(src_ptr);
*mean = 0;
*max = -99999999;
*min = 99999999;
for (int i = 0; i < size; ++i) {
if (*(ptr + i) > *max) {
*max = *(ptr + i);
}
if (*(ptr + i) < *min) {
*min = *(ptr + i);
}
*mean += *(ptr + i);
}
*mean = *mean / size;
}
void FDTensor::PrintInfo(const std::string& prefix) const {
double mean = 0;
double max = -99999999;

View File

@@ -214,4 +214,24 @@ std::string Str(const std::vector<T>& shape) {
return oss.str();
}
template <typename T>
void CalculateStatisInfo(const void* src_ptr, int size, double* mean,
double* max, double* min) {
const T* ptr = static_cast<const T*>(src_ptr);
*mean = static_cast<double>(0);
*max = static_cast<double>(-99999999);
*min = static_cast<double>(99999999);
for (int i = 0; i < size; ++i) {
if (*(ptr + i) > *max) {
*max = *(ptr + i);
}
if (*(ptr + i) < *min) {
*min = *(ptr + i);
}
*mean += *(ptr + i);
}
*mean = *mean / size;
}
} // namespace fastdeploy

View File

@@ -82,6 +82,7 @@ bool PaddleDetPostprocessor::Run(const std::vector<FDTensor>& tensors,
const auto* data = static_cast<const int64_t*>(tensors[1].CpuData());
for (size_t i = 0; i < tensors[1].shape[0]; ++i) {
num_boxes[i] = static_cast<int>(data[i]);
total_num_boxes += num_boxes[i];
}
}

View File

@@ -28,6 +28,7 @@ void Merge(DetectionResult* result, size_t low, size_t mid, size_t high) {
size_t i = low;
size_t j = mid + 1;
size_t k = i;
// TODO(qiuyanjun): add masks process
for (; i <= mid && j <= high; k++) {
if (temp_scores[i] >= temp_scores[j]) {
scores[k] = temp_scores[i];
@@ -70,12 +71,73 @@ void SortDetectionResult(DetectionResult* result) {
size_t low = 0;
size_t high = result->scores.size();
if (high == 0) {
return;
return;
}
high = high - 1;
MergeSort(result, low, high);
}
bool LexSortByXYCompare(const std::array<float, 4>& box_a,
const std::array<float, 4>& box_b) {
// WARN: The status shoule be false if (a==b).
// https://blog.csdn.net/xxxwrq/article/details/83080640
auto is_equal = [](const float& a, const float& b) -> bool {
return std::abs(a - b) < 1e-6f;
};
const float& x0_a = box_a[0];
const float& y0_a = box_a[1];
const float& x0_b = box_b[0];
const float& y0_b = box_b[1];
if (is_equal(x0_a, x0_b)) {
return is_equal(y0_a, y0_b) ? false : y0_a > y0_b;
}
return x0_a > x0_b;
}
void ReorderDetectionResultByIndices(DetectionResult* result,
const std::vector<size_t>& indices) {
// reorder boxes, scores, label_ids, masks
DetectionResult backup = (*result); // move
const bool contain_masks = backup.contain_masks;
const int boxes_num = backup.boxes.size();
result->Clear();
result->Resize(boxes_num);
// boxes, scores, labels_ids
for (int i = 0; i < boxes_num; ++i) {
result->boxes[i] = backup.boxes[indices[i]];
result->scores[i] = backup.scores[indices[i]];
result->label_ids[i] = backup.label_ids[indices[i]];
}
if (contain_masks) {
result->contain_masks = true;
for (int i = 0; i < boxes_num; ++i) {
const auto& shape = backup.masks[indices[i]].shape;
const int mask_numel = shape[0] * shape[1];
result->masks[i].shape = shape;
result->masks[i].Resize(mask_numel);
std::memcpy(result->masks[i].Data(), backup.masks[indices[i]].Data(),
mask_numel * sizeof(uint8_t));
}
}
}
void LexSortDetectionResultByXY(DetectionResult* result) {
if (result->boxes.size() == 0) {
return;
}
std::vector<size_t> indices;
indices.resize(result->boxes.size());
for (size_t i = 0; i < result->boxes.size(); ++i) {
indices[i] = i;
}
// lex sort by x(w) then y(h)
auto& boxes = result->boxes;
std::sort(indices.begin(), indices.end(), [&boxes](size_t a, size_t b) {
return LexSortByXYCompare(boxes[a], boxes[b]);
});
ReorderDetectionResultByIndices(result, indices);
}
} // namespace utils
} // namespace vision
} // namespace fastdeploy

View File

@@ -64,12 +64,13 @@ void NMS(DetectionResult* output, float iou_threshold = 0.5,
void NMS(FaceDetectionResult* result, float iou_threshold = 0.5);
// MergeSort
void SortDetectionResult(DetectionResult* output);
/// Sort DetectionResult/FaceDetectionResult by score
FASTDEPLOY_DECL void SortDetectionResult(DetectionResult* result);
FASTDEPLOY_DECL void SortDetectionResult(FaceDetectionResult* result);
/// Lex Sort DetectionResult/FaceDetectionResult by x(w) & y(h) axis
FASTDEPLOY_DECL void LexSortDetectionResultByXY(DetectionResult* result);
void SortDetectionResult(FaceDetectionResult* result);
// L2 Norm / cosine similarity (for face recognition, ...)
/// L2 Norm / cosine similarity (for face recognition, ...)
FASTDEPLOY_DECL std::vector<float>
L2Normalize(const std::vector<float>& values);

View File

@@ -92,11 +92,12 @@ __build_fastdeploy_android_shared() {
-DENABLE_FLYCV=ON \
-DENABLE_TEXT=OFF \
-DENABLE_VISION=ON \
-DBUILD_EXAMPLES=ON \
-DBUILD_EXAMPLES=OFF \
-DENABLE_BENCHMARK=ON \
-DWITH_OPENCV_STATIC=OFF \
-DWITH_LITE_STATIC=OFF \
-DWITH_OPENMP=OFF \
-DWITH_TESTING=OFF \
-DCMAKE_INSTALL_PREFIX=${FASDEPLOY_INSTALL_DIR} \
-Wno-dev ../../.. && make -j8 && make install

View File

@@ -62,12 +62,22 @@ function(add_fastdeploy_unittest CC_FILE)
endfunction()
if(WITH_TESTING)
if(ANDROID OR IOS)
# gtest in FastDeploy is not support for cross compiling now.
message(FATAL_ERROR "Not support unittest for Android and IOS now.")
endif()
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_library(fastdeploy_gtest_main STATIC gtest_main)
target_link_libraries(fastdeploy_gtest_main PUBLIC gtest gflags)
message(STATUS "")
message(STATUS "*************FastDeploy Unittest Summary**********")
file(GLOB_RECURSE ALL_TEST_SRCS ${PROJECT_SOURCE_DIR}/tests/*/test_*.cc)
if(NOT ENABLE_VISION)
# vision_preprocess and release_task need vision
file(GLOB_RECURSE VISION_TEST_SRCS ${PROJECT_SOURCE_DIR}/tests/vision_preprocess/test_*.cc)
file(GLOB_RECURSE RELEASE_TEST_SRCS ${PROJECT_SOURCE_DIR}/tests/release_task/test_*.cc)
list(REMOVE_ITEM ALL_TEST_SRCS ${VISION_TEST_SRCS} ${RELEASE_TEST_SRCS})
endif()
foreach(_CC_FILE ${ALL_TEST_SRCS})
add_fastdeploy_unittest(${_CC_FILE})
endforeach()