[Benchmark] Add precision evaluation api from benchmark (#1310)

* [Benchmark] Init benchmark precision api

* [Benchmark] Init benchmark precision api

* [Benchmark] Add benchmark precision api

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Add SplitDataLine utils

* [Benchmark] Add LexSortByXY func

* [Benchmark] Add LexSortByXY func

* [Benchmark] Add LexSortDetectionResultByXY func

* [Benchmark] Add LexSortDetectionResultByXY func

* [Benchmark] Add tensor diff presicion test

* [Benchmark] fixed conflicts

* [Benchmark] fixed calc tensor diff

* fixed build bugs

* fixed ci bugs when WITH_TESTING=ON
This commit is contained in:
DefTruth
2023-02-16 17:16:14 +08:00
committed by GitHub
parent bdfb7b0008
commit ee85a3cade
14 changed files with 575 additions and 29 deletions

334
fastdeploy/benchmark/utils.cc Executable file → Normal file
View File

@@ -19,10 +19,15 @@
#include <cmath>
#include "fastdeploy/benchmark/utils.h"
#include "fastdeploy/utils/path.h"
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
#include "fastdeploy/vision/utils/utils.h"
#endif
namespace fastdeploy {
namespace benchmark {
#if defined(ENABLE_BENCHMARK)
std::string Strip(const std::string& str, char ch) {
int i = 0;
while (str[i] == ch) {
@@ -35,8 +40,7 @@ std::string Strip(const std::string& str, char ch) {
return str.substr(i, j + 1 - i);
}
void Split(const std::string& s, std::vector<std::string>& tokens,
char delim) {
void Split(const std::string& s, std::vector<std::string>& tokens, char delim) {
tokens.clear();
size_t lastPos = s.find_first_not_of(delim, 0);
size_t pos = s.find(delim, lastPos);
@@ -146,6 +150,332 @@ std::string ResourceUsageMonitor::GetCurrentGpuMemoryInfo(int device_id) {
#endif
return result;
}
#endif // ENABLE_BENCHMARK
/// Utils for precision evaluation
#if defined(ENABLE_BENCHMARK)
static const char KEY_VALUE_SEP = '#';
static const char VALUE_SEP = ',';
std::vector<std::string> ReadLines(const std::string& path) {
std::ifstream fin(path);
std::vector<std::string> lines;
std::string line;
if (fin.is_open()) {
while (getline(fin, line)) {
lines.push_back(line);
}
} else {
FDERROR << "Failed to open file " << path << std::endl;
std::abort();
}
fin.close();
return lines;
}
std::map<std::string, std::vector<std::string>> SplitDataLine(
const std::string& data_line) {
std::map<std::string, std::vector<std::string>> dict;
std::vector<std::string> tokens, value_tokens;
Split(data_line, tokens, KEY_VALUE_SEP);
std::string key = tokens[0];
std::string value = tokens[1];
Split(value, value_tokens, VALUE_SEP);
dict[key] = value_tokens;
return dict;
}
bool ResultManager::SaveFDTensor(const FDTensor& tensor,
const std::string& path) {
if (tensor.CpuData() == nullptr || tensor.Numel() <= 0) {
FDERROR << "Input tensor is empty!" << std::endl;
return false;
}
std::ofstream fs(path, std::ios::out);
if (!fs.is_open()) {
FDERROR << "Fail to open file:" << path << std::endl;
return false;
}
fs.precision(20);
if (tensor.Dtype() != FDDataType::FP32 &&
tensor.Dtype() != FDDataType::INT32 &&
tensor.Dtype() != FDDataType::INT64) {
FDERROR << "Only support FP32/INT32/INT64 now, but got "
<< Str(tensor.dtype) << std::endl;
return false;
}
// name
fs << "name" << KEY_VALUE_SEP << tensor.name << "\n";
// shape
fs << "shape" << KEY_VALUE_SEP;
for (int i = 0; i < tensor.shape.size(); ++i) {
if (i < tensor.shape.size() - 1) {
fs << tensor.shape[i] << VALUE_SEP;
} else {
fs << tensor.shape[i];
}
}
fs << "\n";
// dtype
fs << "dtype" << KEY_VALUE_SEP << Str(tensor.dtype) << "\n";
// data
fs << "data" << KEY_VALUE_SEP;
const void* data_ptr = tensor.CpuData();
for (int i = 0; i < tensor.Numel(); ++i) {
if (tensor.Dtype() == FDDataType::INT64) {
if (i < tensor.Numel() - 1) {
fs << (static_cast<const int64_t*>(data_ptr))[i] << VALUE_SEP;
} else {
fs << (static_cast<const int64_t*>(data_ptr))[i];
}
} else if (tensor.Dtype() == FDDataType::INT32) {
if (i < tensor.Numel() - 1) {
fs << (static_cast<const int32_t*>(data_ptr))[i] << VALUE_SEP;
} else {
fs << (static_cast<const int32_t*>(data_ptr))[i];
}
} else { // FP32
if (i < tensor.Numel() - 1) {
fs << (static_cast<const float*>(data_ptr))[i] << VALUE_SEP;
} else {
fs << (static_cast<const float*>(data_ptr))[i];
}
}
}
fs << "\n";
fs.close();
return true;
}
bool ResultManager::LoadFDTensor(FDTensor* tensor, const std::string& path) {
if (!CheckFileExists(path)) {
FDERROR << "Can't found file from" << path << std::endl;
return false;
}
auto lines = ReadLines(path);
std::map<std::string, std::vector<std::string>> data;
// name
data = SplitDataLine(lines[0]);
tensor->name = data.begin()->first;
// shape
data = SplitDataLine(lines[1]);
tensor->shape.clear();
for (const auto& s : data.begin()->second) {
tensor->shape.push_back(std::stol(s));
}
// dtype
data = SplitDataLine(lines[2]);
if (data.begin()->second.at(0) == Str(FDDataType::INT64)) {
tensor->dtype = FDDataType::INT64;
} else if (data.begin()->second.at(0) == Str(FDDataType::INT32)) {
tensor->dtype = FDDataType::INT32;
} else if (data.begin()->second.at(0) == Str(FDDataType::FP32)) {
tensor->dtype = FDDataType::FP32;
} else {
FDERROR << "Only support FP32/INT64/INT32 now, but got "
<< data.begin()->second.at(0) << std::endl;
return false;
}
// data
data = SplitDataLine(lines[3]);
tensor->Allocate(tensor->shape, tensor->dtype, tensor->name);
if (tensor->dtype == FDDataType::INT64) {
int64_t* mutable_data_ptr = static_cast<int64_t*>(tensor->MutableData());
for (int i = 0; i < data.begin()->second.size(); ++i) {
mutable_data_ptr[i] = std::stol(data.begin()->second[i]);
}
} else if (tensor->dtype == FDDataType::INT32) {
int32_t* mutable_data_ptr = static_cast<int32_t*>(tensor->MutableData());
for (int i = 0; i < data.begin()->second.size(); ++i) {
mutable_data_ptr[i] = std::stoi(data.begin()->second[i]);
}
} else { // FP32
float* mutable_data_ptr = static_cast<float*>(tensor->MutableData());
for (int i = 0; i < data.begin()->second.size(); ++i) {
mutable_data_ptr[i] = std::stof(data.begin()->second[i]);
}
}
return true;
}
TensorDiff ResultManager::CalculateDiffStatis(FDTensor* lhs, FDTensor* rhs) {
if (lhs->Numel() != rhs->Numel() || lhs->Dtype() != rhs->Dtype()) {
FDASSERT(false,
"The size and dtype of input FDTensor must be equal!"
" But got size %d, %d, dtype %s, %s",
lhs->Numel(), rhs->Numel(), Str(lhs->Dtype()).c_str(),
Str(rhs->Dtype()).c_str())
}
FDDataType dtype = lhs->Dtype();
int numel = lhs->Numel();
if (dtype != FDDataType::FP32 && dtype != FDDataType::INT64 &&
dtype != FDDataType::INT32) {
FDASSERT(false, "Only support FP32/INT64/INT32 now, but got %s",
Str(dtype).c_str())
}
if (dtype == FDDataType::INT64) {
std::vector<int64_t> tensor_diff(numel);
const int64_t* lhs_data_ptr = static_cast<const int64_t*>(lhs->CpuData());
const int64_t* rhs_data_ptr = static_cast<const int64_t*>(rhs->CpuData());
for (int i = 0; i < numel; ++i) {
tensor_diff[i] = lhs_data_ptr[i] - rhs_data_ptr[i];
}
TensorDiff diff;
CalculateStatisInfo<int64_t>(tensor_diff.data(), numel, &(diff.mean),
&(diff.max), &(diff.min));
return diff;
} else if (dtype == FDDataType::INT32) {
std::vector<int32_t> tensor_diff(numel);
const int32_t* lhs_data_ptr = static_cast<const int32_t*>(lhs->CpuData());
const int32_t* rhs_data_ptr = static_cast<const int32_t*>(rhs->CpuData());
for (int i = 0; i < numel; ++i) {
tensor_diff[i] = lhs_data_ptr[i] - rhs_data_ptr[i];
}
TensorDiff diff;
CalculateStatisInfo<float>(tensor_diff.data(), numel, &(diff.mean),
&(diff.max), &(diff.min));
return diff;
} else { // FP32
std::vector<float> tensor_diff(numel);
const float* lhs_data_ptr = static_cast<const float*>(lhs->CpuData());
const float* rhs_data_ptr = static_cast<const float*>(rhs->CpuData());
for (int i = 0; i < numel; ++i) {
tensor_diff[i] = lhs_data_ptr[i] - rhs_data_ptr[i];
}
TensorDiff diff;
CalculateStatisInfo<float>(tensor_diff.data(), numel, &(diff.mean),
&(diff.max), &(diff.min));
return diff;
}
}
#if defined(ENABLE_VISION)
bool ResultManager::SaveDetectionResult(const vision::DetectionResult& res,
const std::string& path) {
if (res.boxes.empty()) {
FDERROR << "DetectionResult can not be empty!" << std::endl;
return false;
}
std::ofstream fs(path, std::ios::out);
if (!fs.is_open()) {
FDERROR << "Fail to open file:" << path << std::endl;
return false;
}
fs.precision(20);
// boxes
fs << "boxes" << KEY_VALUE_SEP;
for (int i = 0; i < res.boxes.size(); ++i) {
for (int j = 0; j < 4; ++j) {
if ((i == res.boxes.size() - 1) && (j == 3)) {
fs << res.boxes[i][j];
} else {
fs << res.boxes[i][j] << VALUE_SEP;
}
}
}
fs << "\n";
// scores
fs << "scores" << KEY_VALUE_SEP;
for (int i = 0; i < res.scores.size(); ++i) {
if (i < res.scores.size() - 1) {
fs << res.scores[i] << VALUE_SEP;
} else {
fs << res.scores[i];
}
}
fs << "\n";
// label_ids
fs << "label_ids" << KEY_VALUE_SEP;
for (int i = 0; i < res.label_ids.size(); ++i) {
if (i < res.label_ids.size() - 1) {
fs << res.label_ids[i] << VALUE_SEP;
} else {
fs << res.label_ids[i];
}
}
fs << "\n";
// TODO(qiuyanjun): dump masks
fs.close();
return true;
}
bool ResultManager::LoadDetectionResult(vision::DetectionResult* res,
const std::string& path) {
if (!CheckFileExists(path)) {
FDERROR << "Can't found file from" << path << std::endl;
return false;
}
auto lines = ReadLines(path);
std::map<std::string, std::vector<std::string>> data;
// boxes
data = SplitDataLine(lines[0]);
int boxes_num = data.begin()->second.size() / 4;
res->Resize(boxes_num);
for (int i = 0; i < boxes_num; ++i) {
res->boxes[i][0] = std::stof(data.begin()->second[i * 4 + 0]);
res->boxes[i][1] = std::stof(data.begin()->second[i * 4 + 1]);
res->boxes[i][2] = std::stof(data.begin()->second[i * 4 + 2]);
res->boxes[i][3] = std::stof(data.begin()->second[i * 4 + 3]);
}
// scores
data = SplitDataLine(lines[1]);
for (int i = 0; i < data.begin()->second.size(); ++i) {
res->scores[i] = std::stof(data.begin()->second[i]);
}
// label_ids
data = SplitDataLine(lines[2]);
for (int i = 0; i < data.begin()->second.size(); ++i) {
res->label_ids[i] = std::stoi(data.begin()->second[i]);
}
// TODO(qiuyanjun): load masks
return true;
}
DetectionDiff ResultManager::CalculateDiffStatis(vision::DetectionResult* lhs,
vision::DetectionResult* rhs,
float score_threshold) {
// lex sort by x(w) & y(h)
vision::utils::LexSortDetectionResultByXY(lhs);
vision::utils::LexSortDetectionResultByXY(rhs);
// get value diff & trunc it by score_threshold
const int boxes_num = std::min(lhs->boxes.size(), rhs->boxes.size());
std::vector<float> boxes_diff;
std::vector<float> scores_diff;
std::vector<int32_t> labels_diff;
// TODO(qiuyanjun): process the diff of masks.
for (int i = 0; i < boxes_num; ++i) {
if (lhs->scores[i] > score_threshold && rhs->scores[i] > score_threshold) {
scores_diff.push_back(lhs->scores[i] - rhs->scores[i]);
labels_diff.push_back(lhs->label_ids[i] - rhs->label_ids[i]);
boxes_diff.push_back(lhs->boxes[i][0] - rhs->boxes[i][0]);
boxes_diff.push_back(lhs->boxes[i][1] - rhs->boxes[i][1]);
boxes_diff.push_back(lhs->boxes[i][2] - rhs->boxes[i][2]);
boxes_diff.push_back(lhs->boxes[i][3] - rhs->boxes[i][3]);
}
}
FDASSERT(boxes_diff.size() > 0,
"Can't get any valid boxes while score_threshold is %f, "
"The boxes.size of lhs is %d, the boxes.size of rhs is %d",
score_threshold, lhs->boxes.size(), rhs->boxes.size())
DetectionDiff diff;
CalculateStatisInfo<float>(boxes_diff.data(), boxes_diff.size(),
&(diff.boxes.mean), &(diff.boxes.max),
&(diff.boxes.min));
CalculateStatisInfo<float>(scores_diff.data(), scores_diff.size(),
&(diff.scores.mean), &(diff.scores.max),
&(diff.scores.min));
CalculateStatisInfo<int32_t>(labels_diff.data(), labels_diff.size(),
&(diff.labels.mean), &(diff.labels.max),
&(diff.labels.min));
diff.mean = diff.boxes.mean;
diff.max = diff.boxes.max;
diff.min = diff.boxes.min;
return diff;
}
#endif // ENABLE_VISION
#endif // ENABLE_BENCHMARK
} // namespace benchmark
} // namespace fastdeploy