mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
add Tool Parser (#3272)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* add tool-parser * add tool-parser * add tool parser * add tool parser * fix * add offline * add offline * fix * parsers:tool&reasoning * 修改tool parser名称· * update * fix reasoning-parser * add requirements * fix finish reason * fix * fix reasoning-parser * fix * fix * fix * fix * fix --------- Co-authored-by: zhuzixuan <zhuzixuan@baidu.com>
This commit is contained in:
24
fastdeploy/entrypoints/openai/tool_parsers/__init__.py
Normal file
24
fastdeploy/entrypoints/openai/tool_parsers/__init__.py
Normal file
@@ -0,0 +1,24 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from .abstract_tool_parser import ToolParser, ToolParserManager
|
||||
from .ernie_x1_tool_parser import ErnieX1ToolParser
|
||||
|
||||
__all__ = [
|
||||
"ToolParser",
|
||||
"ToolParserManager",
|
||||
"ErnieX1ToolParser",
|
||||
]
|
@@ -0,0 +1,159 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import os
|
||||
from collections.abc import Sequence
|
||||
from functools import cached_property
|
||||
from typing import Callable, Optional, Union
|
||||
|
||||
from fastdeploy.entrypoints.openai.protocol import (
|
||||
ChatCompletionRequest,
|
||||
DeltaMessage,
|
||||
ExtractedToolCallInformation,
|
||||
)
|
||||
from fastdeploy.utils import data_processor_logger, import_from_path, is_list_of
|
||||
|
||||
|
||||
class ToolParser:
|
||||
"""
|
||||
Abstract ToolParser class that should not be used directly. Provided
|
||||
properties and methods should be used in
|
||||
derived classes.
|
||||
"""
|
||||
|
||||
def __init__(self, tokenizer):
|
||||
self.prev_tool_call_arr: list[dict] = []
|
||||
# the index of the tool call that is currently being parsed
|
||||
self.current_tool_id: int = -1
|
||||
self.current_tool_name_sent: bool = False
|
||||
self.streamed_args_for_tool: list[str] = []
|
||||
|
||||
self.model_tokenizer = tokenizer
|
||||
|
||||
@cached_property
|
||||
def vocab(self) -> dict[str, int]:
|
||||
# NOTE: Only PreTrainedTokenizerFast is guaranteed to have .vocab
|
||||
# whereas all tokenizers have .get_vocab()
|
||||
return self.model_tokenizer.get_vocab()
|
||||
|
||||
def adjust_request(self, request: ChatCompletionRequest) -> ChatCompletionRequest:
|
||||
"""
|
||||
Static method that used to adjust the request parameters.
|
||||
"""
|
||||
return request
|
||||
|
||||
def extract_tool_calls(self, model_output: str, request: ChatCompletionRequest) -> ExtractedToolCallInformation:
|
||||
"""
|
||||
Static method that should be implemented for extracting tool calls from
|
||||
a complete model-generated string.
|
||||
Used for non-streaming responses where we have the entire model response
|
||||
available before sending to the client.
|
||||
Static because it's stateless.
|
||||
"""
|
||||
raise NotImplementedError("AbstractToolParser.extract_tool_calls has not been implemented!")
|
||||
|
||||
def extract_tool_calls_streaming(
|
||||
self,
|
||||
previous_text: str,
|
||||
current_text: str,
|
||||
delta_text: str,
|
||||
previous_token_ids: Sequence[int],
|
||||
current_token_ids: Sequence[int],
|
||||
delta_token_ids: Sequence[int],
|
||||
request: ChatCompletionRequest,
|
||||
) -> Union[DeltaMessage, None]:
|
||||
"""
|
||||
Instance method that should be implemented for extracting tool calls
|
||||
from an incomplete response; for use when handling tool calls and
|
||||
streaming. Has to be an instance method because it requires state -
|
||||
the current tokens/diffs, but also the information about what has
|
||||
previously been parsed and extracted (see constructor)
|
||||
"""
|
||||
raise NotImplementedError("AbstractToolParser.extract_tool_calls_streaming has not been " "implemented!")
|
||||
|
||||
|
||||
class ToolParserManager:
|
||||
tool_parsers: dict[str, type] = {}
|
||||
|
||||
@classmethod
|
||||
def get_tool_parser(cls, name) -> type:
|
||||
"""
|
||||
Get tool parser by name which is registered by `register_module`.
|
||||
|
||||
Raise a KeyError exception if the name is not registered.
|
||||
"""
|
||||
if name in cls.tool_parsers:
|
||||
return cls.tool_parsers[name]
|
||||
|
||||
raise KeyError(f"tool helper: '{name}' not found in tool_parsers")
|
||||
|
||||
@classmethod
|
||||
def _register_module(
|
||||
cls, module: type, module_name: Optional[Union[str, list[str]]] = None, force: bool = True
|
||||
) -> None:
|
||||
if not issubclass(module, ToolParser):
|
||||
raise TypeError(f"module must be subclass of ToolParser, but got {type(module)}")
|
||||
if module_name is None:
|
||||
module_name = module.__name__
|
||||
if isinstance(module_name, str):
|
||||
module_name = [module_name]
|
||||
for name in module_name:
|
||||
if not force and name in cls.tool_parsers:
|
||||
existed_module = cls.tool_parsers[name]
|
||||
raise KeyError(f"{name} is already registered " f"at {existed_module.__module__}")
|
||||
cls.tool_parsers[name] = module
|
||||
|
||||
@classmethod
|
||||
def register_module(
|
||||
cls, name: Optional[Union[str, list[str]]] = None, force: bool = True, module: Union[type, None] = None
|
||||
) -> Union[type, Callable]:
|
||||
"""
|
||||
Register module with the given name or name list. it can be used as a
|
||||
decoder(with module as None) or normal function(with module as not
|
||||
None).
|
||||
"""
|
||||
if not isinstance(force, bool):
|
||||
raise TypeError(f"force must be a boolean, but got {type(force)}")
|
||||
|
||||
# raise the error ahead of time
|
||||
if not (name is None or isinstance(name, str) or is_list_of(name, str)):
|
||||
raise TypeError("name must be None, an instance of str, or a sequence of str, " f"but got {type(name)}")
|
||||
|
||||
# use it as a normal method: x.register_module(module=SomeClass)
|
||||
if module is not None:
|
||||
cls._register_module(module=module, module_name=name, force=force)
|
||||
return module
|
||||
|
||||
# use it as a decorator: @x.register_module()
|
||||
def _register(module):
|
||||
cls._register_module(module=module, module_name=name, force=force)
|
||||
return module
|
||||
|
||||
return _register
|
||||
|
||||
@classmethod
|
||||
def import_tool_parser(cls, plugin_path: str) -> None:
|
||||
"""
|
||||
Import a user-defined tool parser by the path of the tool parser define
|
||||
file.
|
||||
"""
|
||||
module_name = os.path.splitext(os.path.basename(plugin_path))[0]
|
||||
|
||||
try:
|
||||
import_from_path(module_name, plugin_path)
|
||||
except Exception:
|
||||
data_processor_logger.exception("Failed to load module '%s' from %s.", module_name, plugin_path)
|
||||
return
|
@@ -0,0 +1,320 @@
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import re
|
||||
import uuid
|
||||
from collections.abc import Sequence
|
||||
from typing import Union
|
||||
|
||||
import partial_json_parser
|
||||
|
||||
|
||||
def random_tool_call_id() -> str:
|
||||
"""Generate a random tool call ID"""
|
||||
return f"chatcmpl-tool-{str(uuid.uuid4().hex)}"
|
||||
|
||||
|
||||
from fastdeploy.entrypoints.openai.protocol import (
|
||||
ChatCompletionRequest,
|
||||
DeltaFunctionCall,
|
||||
DeltaMessage,
|
||||
DeltaToolCall,
|
||||
ExtractedToolCallInformation,
|
||||
FunctionCall,
|
||||
ToolCall,
|
||||
)
|
||||
from fastdeploy.entrypoints.openai.tool_parsers.abstract_tool_parser import (
|
||||
ToolParser,
|
||||
ToolParserManager,
|
||||
)
|
||||
from fastdeploy.utils import data_processor_logger
|
||||
|
||||
|
||||
@ToolParserManager.register_module("ernie_x1")
|
||||
class ErnieX1ToolParser(ToolParser):
|
||||
"""
|
||||
Tool parser for Ernie model version 4.5.1.
|
||||
This parser handles tool calls with newline formats.
|
||||
"""
|
||||
|
||||
def __init__(self, tokenizer):
|
||||
super().__init__(tokenizer)
|
||||
|
||||
self.prev_tool_call_arr: list[dict] = []
|
||||
self.current_tool_id: int = -1
|
||||
self.current_tool_name_sent: bool = False
|
||||
self.streamed_args_for_tool: list[str] = [] # map what has been streamed for each tool so far to a list
|
||||
self.buffer: str = "" # buffer for accumulating unprocessed streaming content
|
||||
|
||||
if not self.model_tokenizer:
|
||||
raise ValueError(
|
||||
"The model tokenizer must be passed to the ToolCallParser constructor during construction."
|
||||
)
|
||||
|
||||
def extract_tool_calls(self, model_output: str, request: ChatCompletionRequest) -> ExtractedToolCallInformation:
|
||||
"""
|
||||
Extract the tool calls from a complete model response.
|
||||
Supports XML-style formats with newlines:
|
||||
- XML format: <think>\n...\n</think>\n\n\n<tool_call>\n{...}\n</tool_call>\n...
|
||||
|
||||
Handles boundary cases:
|
||||
1. Only name and partial arguments: {"name": "get_weather", "arguments": {"location": "北京"
|
||||
2. Only partial name: {"name": "get_we
|
||||
3. Only name and arguments field without content: {"name": "get_weather", "argume
|
||||
"""
|
||||
|
||||
try:
|
||||
tool_calls = []
|
||||
|
||||
# Check for invalid <response> tags before tool calls
|
||||
if re.search(r"<response>[\s\S]*?</response>\s*(?=<tool_call>)", model_output):
|
||||
data_processor_logger.error("Invalid format: <response> tags found before <tool_call>")
|
||||
return ExtractedToolCallInformation(tools_called=False, content=model_output)
|
||||
|
||||
function_call_arr = []
|
||||
remaining_text = model_output
|
||||
|
||||
while True:
|
||||
# 查找下一个tool_call块
|
||||
tool_call_pos = remaining_text.find("<tool_call>")
|
||||
if tool_call_pos == -1:
|
||||
break
|
||||
|
||||
# 提取tool_call开始位置后的内容
|
||||
tool_content_start = tool_call_pos + len("<tool_call>")
|
||||
tool_content_end = remaining_text.find("</tool_call>", tool_content_start)
|
||||
|
||||
tool_json = ""
|
||||
if tool_content_end == -1:
|
||||
# 处理未闭合的tool_call块(截断情况)
|
||||
tool_json = remaining_text[tool_content_start:].strip()
|
||||
remaining_text = "" # 没有更多内容需要处理
|
||||
else:
|
||||
# 处理完整的tool_call块
|
||||
tool_json = remaining_text[tool_content_start:tool_content_end].strip()
|
||||
remaining_text = remaining_text[tool_content_end + len("</tool_call>") :]
|
||||
|
||||
if not tool_json:
|
||||
continue
|
||||
|
||||
# 处理JSON内容
|
||||
tool_json = tool_json.strip()
|
||||
if not tool_json.startswith("{"):
|
||||
tool_json = "{" + tool_json
|
||||
if not tool_json.endswith("}"):
|
||||
tool_json = tool_json + "}"
|
||||
|
||||
try:
|
||||
# 首先尝试标准JSON解析
|
||||
try:
|
||||
tool_data = json.loads(tool_json)
|
||||
|
||||
if isinstance(tool_data, dict) and "name" in tool_data and "arguments" in tool_data:
|
||||
function_call_arr.append(
|
||||
{
|
||||
"name": tool_data["name"],
|
||||
"arguments": tool_data["arguments"],
|
||||
"_is_complete": True, # 明确标记为完整解析
|
||||
}
|
||||
)
|
||||
continue
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# 标准解析失败时尝试partial_json_parser
|
||||
from partial_json_parser.core.options import Allow
|
||||
|
||||
try:
|
||||
tool_data = {}
|
||||
flags = Allow.ALL & ~Allow.STR
|
||||
|
||||
# 解析name字段
|
||||
name_match = re.search(r'"name"\s*:\s*"([^"]*)"', tool_json)
|
||||
if name_match:
|
||||
tool_data["name"] = name_match.group(1)
|
||||
|
||||
# 解析arguments字段
|
||||
args_match = re.search(r'"arguments"\s*:\s*(\{.*)', tool_json)
|
||||
if args_match:
|
||||
try:
|
||||
tool_data["arguments"] = partial_json_parser.loads(args_match.group(1), flags=flags)
|
||||
except:
|
||||
tool_data["arguments"] = None
|
||||
|
||||
if isinstance(tool_data, dict):
|
||||
function_call_arr.append(
|
||||
{
|
||||
"name": tool_data.get("name", ""),
|
||||
"arguments": tool_data.get("arguments", {}),
|
||||
"_is_partial": True, # 标记为部分解析
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
data_processor_logger.debug(f"Failed to parse tool call: {str(e)}")
|
||||
continue
|
||||
except Exception as e:
|
||||
data_processor_logger.debug(f"Failed to parse tool call: {str(e)}")
|
||||
continue
|
||||
|
||||
if not function_call_arr:
|
||||
data_processor_logger.error("No valid tool calls found")
|
||||
return ExtractedToolCallInformation(tools_called=False, content=model_output)
|
||||
|
||||
tool_calls = []
|
||||
all_complete = True # 初始设为True,只要有一个不完整就变为False
|
||||
|
||||
for tool_call in function_call_arr:
|
||||
# 记录工具调用解析状态
|
||||
is_complete = tool_call.get("_is_complete", False)
|
||||
is_partial = tool_call.get("_is_partial", False)
|
||||
|
||||
# 只要有一个不完整就认为整体不完整
|
||||
if not is_complete or is_partial:
|
||||
all_complete = False
|
||||
|
||||
# 处理参数序列化
|
||||
tool_args = tool_call.get("arguments", {})
|
||||
if not isinstance(tool_args, dict):
|
||||
tool_args = {}
|
||||
|
||||
try:
|
||||
args_str = json.dumps(tool_args, ensure_ascii=False) if tool_args else "{}"
|
||||
except:
|
||||
args_str = "{}"
|
||||
|
||||
tool_calls.append(
|
||||
ToolCall(
|
||||
type="function",
|
||||
id=random_tool_call_id(),
|
||||
function=FunctionCall(
|
||||
name=tool_call.get("name", ""),
|
||||
arguments=args_str,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# 只有当所有工具调用都明确标记为complete时才返回tools_called=True
|
||||
return ExtractedToolCallInformation(
|
||||
tools_called=all_complete, tool_calls=tool_calls if tool_calls else None, content=""
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
data_processor_logger.error(f"Error in extracting tool call from response: {str(e)}")
|
||||
return ExtractedToolCallInformation(tools_called=False, tool_calls=None, content=model_output)
|
||||
|
||||
def extract_tool_calls_streaming(
|
||||
self,
|
||||
previous_text: str,
|
||||
current_text: str,
|
||||
delta_text: str,
|
||||
previous_token_ids: Sequence[int],
|
||||
current_token_ids: Sequence[int],
|
||||
delta_token_ids: Sequence[int],
|
||||
request: dict,
|
||||
) -> Union[DeltaMessage, None]:
|
||||
# 忽略空chunk
|
||||
if len(delta_text.strip()) == 0:
|
||||
return None
|
||||
|
||||
try:
|
||||
delta = None
|
||||
# 使用buffer累积delta_text内容
|
||||
self.buffer += delta_text
|
||||
|
||||
# 处理增量中的新tool_call开始
|
||||
if "<tool_call>" in delta_text and "<tool_call>" not in previous_text:
|
||||
self.current_tool_id = (
|
||||
max(self.current_tool_id, 0) if self.current_tool_id == -1 else self.current_tool_id + 1
|
||||
)
|
||||
self.current_tool_name_sent = False
|
||||
if len(self.streamed_args_for_tool) <= self.current_tool_id:
|
||||
self.streamed_args_for_tool.append("")
|
||||
data_processor_logger.debug(f"New tool call started with ID: {self.current_tool_id}")
|
||||
|
||||
# 增量解析逻辑
|
||||
|
||||
# 1. 尝试解析name字段
|
||||
if not self.current_tool_name_sent and '"name"' in self.buffer:
|
||||
name_match = re.search(r'"name"\s*:\s*"([^"]*)"', self.buffer)
|
||||
if name_match:
|
||||
name = name_match.group(1)
|
||||
if name:
|
||||
delta = DeltaMessage(
|
||||
tool_calls=[
|
||||
DeltaToolCall(
|
||||
index=self.current_tool_id,
|
||||
type="function",
|
||||
id=random_tool_call_id(),
|
||||
function=DeltaFunctionCall(name=name).model_dump(exclude_none=True),
|
||||
)
|
||||
]
|
||||
)
|
||||
print("delta name:", delta)
|
||||
# 删除已处理的name部分
|
||||
self.buffer = self.buffer[name_match.end() :]
|
||||
self.current_tool_name_sent = True
|
||||
return delta
|
||||
# 2. 尝试解析arguments字段
|
||||
if '"arguments"' in self.buffer:
|
||||
args_match = re.search(r'"arguments"\s*:\s*(\{.*)', self.buffer)
|
||||
if args_match:
|
||||
args_content = args_match.group(1)
|
||||
# 处理多余的大括号
|
||||
open_braces = args_content.count("{")
|
||||
close_braces = args_content.count("}")
|
||||
if close_braces > open_braces:
|
||||
args_content = args_content[: args_content.rfind("}")]
|
||||
try:
|
||||
# 增量解析arguments
|
||||
parsed_args = json.loads(args_content)
|
||||
if isinstance(parsed_args, dict):
|
||||
args_json = json.dumps(parsed_args, ensure_ascii=False)
|
||||
if len(args_json) > len(self.streamed_args_for_tool[self.current_tool_id]):
|
||||
argument_diff = args_json[len(self.streamed_args_for_tool[self.current_tool_id]) :]
|
||||
delta = DeltaMessage(
|
||||
tool_calls=[
|
||||
DeltaToolCall(
|
||||
index=self.current_tool_id,
|
||||
function=DeltaFunctionCall(arguments=argument_diff).model_dump(
|
||||
exclude_none=True
|
||||
),
|
||||
)
|
||||
]
|
||||
)
|
||||
print("delta argument:", delta)
|
||||
# 删除已处理部分
|
||||
processed_pos = args_match.start() + len('"arguments":')
|
||||
self.buffer = (
|
||||
self.buffer[:processed_pos] + self.buffer[processed_pos + len(args_json) :]
|
||||
)
|
||||
self.streamed_args_for_tool[self.current_tool_id] = args_json
|
||||
return delta
|
||||
except Exception as e:
|
||||
data_processor_logger.debug(f"Partial arguments parsing: {str(e)}")
|
||||
|
||||
if "</tool_call>" in self.buffer:
|
||||
end_pos = self.buffer.find("</tool_call>")
|
||||
self.buffer = self.buffer[end_pos + len("</tool_call>") :]
|
||||
|
||||
# 完成当前工具调用处理
|
||||
self.current_tool_id += 1
|
||||
self.current_tool_name_sent = False
|
||||
self.streamed_args_for_tool.append("")
|
||||
|
||||
return delta
|
||||
|
||||
except Exception as e:
|
||||
data_processor_logger.error(f"Error in streaming tool call extraction: {str(e)}")
|
||||
return None
|
137
fastdeploy/entrypoints/openai/tool_parsers/utils.py
Normal file
137
fastdeploy/entrypoints/openai/tool_parsers/utils.py
Normal file
@@ -0,0 +1,137 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import json
|
||||
from json import JSONDecodeError, JSONDecoder
|
||||
from typing import Any
|
||||
|
||||
import partial_json_parser
|
||||
from partial_json_parser.core.options import Allow
|
||||
|
||||
|
||||
def find_common_prefix(s1: str, s2: str) -> str:
|
||||
"""
|
||||
Finds a common prefix that is shared between two strings, if there is one.
|
||||
Order of arguments is NOT important.
|
||||
|
||||
This function is provided as a UTILITY for extracting information from JSON
|
||||
generated by partial_json_parser, to help in ensuring that the right tokens
|
||||
are returned in streaming, so that close-quotes, close-brackets and
|
||||
close-braces are not returned prematurely.
|
||||
|
||||
e.g. find_common_prefix('{"fruit": "ap"}', '{"fruit": "apple"}') ->
|
||||
'{"fruit": "ap'
|
||||
"""
|
||||
prefix = ""
|
||||
min_length = min(len(s1), len(s2))
|
||||
for i in range(0, min_length):
|
||||
if s1[i] == s2[i]:
|
||||
prefix += s1[i]
|
||||
else:
|
||||
break
|
||||
return prefix
|
||||
|
||||
|
||||
def find_common_suffix(s1: str, s2: str) -> str:
|
||||
"""
|
||||
Finds a common suffix shared between two strings, if there is one. Order of
|
||||
arguments is NOT important.
|
||||
Stops when the suffix ends OR it hits an alphanumeric character
|
||||
|
||||
e.g. find_common_suffix('{"fruit": "ap"}', '{"fruit": "apple"}') -> '"}'
|
||||
"""
|
||||
suffix = ""
|
||||
min_length = min(len(s1), len(s2))
|
||||
for i in range(1, min_length + 1):
|
||||
if s1[-i] == s2[-i] and not s1[-i].isalnum():
|
||||
suffix = s1[-i] + suffix
|
||||
else:
|
||||
break
|
||||
return suffix
|
||||
|
||||
|
||||
def extract_intermediate_diff(curr: str, old: str) -> str:
|
||||
"""
|
||||
Given two strings, extract the difference in the middle between two strings
|
||||
that are known to have a common prefix and/or suffix.
|
||||
|
||||
This function is provided as a UTILITY for extracting information from JSON
|
||||
generated by partial_json_parser, to help in ensuring that the right tokens
|
||||
are returned in streaming, so that close-quotes, close-brackets and
|
||||
close-braces are not returned prematurely. The order of arguments IS
|
||||
important - the new version of the partially-parsed JSON must be the first
|
||||
argument, and the secnod argument must be from the previous generation.
|
||||
|
||||
What it returns, is tokens that should be streamed to the client.
|
||||
|
||||
e.g. extract_intermediate_diff('{"fruit": "apple"}', '{"fruit": "ap"}')
|
||||
-> 'ple'
|
||||
|
||||
"""
|
||||
suffix = find_common_suffix(curr, old)
|
||||
|
||||
old = old[::-1].replace(suffix[::-1], "", 1)[::-1]
|
||||
prefix = find_common_prefix(curr, old)
|
||||
diff = curr
|
||||
if len(suffix):
|
||||
diff = diff[::-1].replace(suffix[::-1], "", 1)[::-1]
|
||||
|
||||
if len(prefix):
|
||||
# replace the prefix only once in case it's mirrored
|
||||
diff = diff.replace(prefix, "", 1)
|
||||
|
||||
return diff
|
||||
|
||||
|
||||
def find_all_indices(string: str, substring: str) -> list[int]:
|
||||
"""
|
||||
Find all (starting) indices of a substring in a given string. Useful for
|
||||
tool call extraction
|
||||
"""
|
||||
indices = []
|
||||
index = -1
|
||||
while True:
|
||||
index = string.find(substring, index + 1)
|
||||
if index == -1:
|
||||
break
|
||||
indices.append(index)
|
||||
return indices
|
||||
|
||||
|
||||
# partial_json_parser doesn't support extra data and
|
||||
# JSONDecoder.raw_decode doesn't support partial JSON
|
||||
def partial_json_loads(input_str: str, flags: Allow) -> tuple[Any, int]:
|
||||
try:
|
||||
return (partial_json_parser.loads(input_str, flags), len(input_str))
|
||||
except JSONDecodeError as e:
|
||||
if "Extra data" in e.msg:
|
||||
dec = JSONDecoder()
|
||||
return dec.raw_decode(input_str)
|
||||
raise
|
||||
|
||||
|
||||
def is_complete_json(input_str: str) -> bool:
|
||||
try:
|
||||
json.loads(input_str)
|
||||
return True
|
||||
except JSONDecodeError:
|
||||
return False
|
||||
|
||||
|
||||
def consume_space(i: int, s: str) -> int:
|
||||
while i < len(s) and s[i].isspace():
|
||||
i += 1
|
||||
return i
|
Reference in New Issue
Block a user