mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 01:50:27 +08:00
[Model] Refactor insightface models (#919)
* 重构insightface代码 * 重写insightface example代码 * 重写insightface example代码 * 删除多余代码 * 修改预处理代码 * 修改文档 * 修改文档 * 恢复误删除的文件 * 修改cpp example * 修改cpp example * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 跑通python代码 * 修复重复初始化的bug * 更新adaface的python代码 * 修复c++重复初始化的问题 * 修复c++重复初始化的问题 * 修复Python重复初始化的问题 * 新增preprocess的几个参数的获取方式 * 修复注释的错误 * 按照要求修改 * 修改文档中的图片为图片压缩包 * 修改编译完成后程序的提示 * 更新错误include * 删除无用文件 * 更新文档
This commit is contained in:
109
python/fastdeploy/vision/faceid/contrib/adaface/__init__.py
Normal file
109
python/fastdeploy/vision/faceid/contrib/adaface/__init__.py
Normal file
@@ -0,0 +1,109 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from ..... import FastDeployModel, ModelFormat
|
||||
from ..... import c_lib_wrap as C
|
||||
|
||||
|
||||
class AdaFacePreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for AdaFace Model
|
||||
"""
|
||||
self._preprocessor = C.vision.faceid.AdaFacePreprocessor()
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for AdaFace Model
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor, include image, scale_factor, im_shape
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
|
||||
class AdaFacePostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for AdaFace Model
|
||||
|
||||
"""
|
||||
self._postprocessor = C.vision.faceid.AdaFacePostprocessor()
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for PaddleClas Model
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.5
|
||||
"""
|
||||
return self._postprocessor.l2_normalize
|
||||
|
||||
|
||||
class AdaFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a AdaFace model exported by PaddleClas.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g adaface/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g adaface/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
super(AdaFace, self).__init__(runtime_option)
|
||||
self._model = C.vision.faceid.AdaFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "AdaFace model initialize failed."
|
||||
|
||||
def predict(self, im):
|
||||
"""Detect an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: DetectionResult
|
||||
"""
|
||||
|
||||
assert im is not None, "The input image data is None."
|
||||
return self._model.predict(im)
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Detect a batch of input image list
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get AdaFacePreprocessor object of the loaded model
|
||||
|
||||
:return AdaFacePreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get AdaFacePostprocessor object of the loaded model
|
||||
|
||||
:return AdaFacePostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
Reference in New Issue
Block a user