mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Model] Refactor insightface models (#919)
* 重构insightface代码 * 重写insightface example代码 * 重写insightface example代码 * 删除多余代码 * 修改预处理代码 * 修改文档 * 修改文档 * 恢复误删除的文件 * 修改cpp example * 修改cpp example * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 测试python代码 * 跑通python代码 * 修复重复初始化的bug * 更新adaface的python代码 * 修复c++重复初始化的问题 * 修复c++重复初始化的问题 * 修复Python重复初始化的问题 * 新增preprocess的几个参数的获取方式 * 修复注释的错误 * 按照要求修改 * 修改文档中的图片为图片压缩包 * 修改编译完成后程序的提示 * 更新错误include * 删除无用文件 * 更新文档
This commit is contained in:
@@ -13,9 +13,4 @@
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from .contrib.adaface import AdaFace
|
||||
from .contrib.arcface import ArcFace
|
||||
from .contrib.cosface import CosFace
|
||||
from .contrib.insightface_rec import InsightFaceRecognitionModel
|
||||
from .contrib.partial_fc import PartialFC
|
||||
from .contrib.vpl import VPL
|
||||
from .contrib import *
|
||||
|
@@ -13,3 +13,5 @@
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from .insightface import *
|
||||
from .adaface import *
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class AdaFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a AdaFace model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./adaface.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(AdaFace, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.AdaFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "AdaFace initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)), \
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2, \
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)), \
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3, \
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)), \
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3, \
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
109
python/fastdeploy/vision/faceid/contrib/adaface/__init__.py
Normal file
109
python/fastdeploy/vision/faceid/contrib/adaface/__init__.py
Normal file
@@ -0,0 +1,109 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from ..... import FastDeployModel, ModelFormat
|
||||
from ..... import c_lib_wrap as C
|
||||
|
||||
|
||||
class AdaFacePreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for AdaFace Model
|
||||
"""
|
||||
self._preprocessor = C.vision.faceid.AdaFacePreprocessor()
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for AdaFace Model
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor, include image, scale_factor, im_shape
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
|
||||
class AdaFacePostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for AdaFace Model
|
||||
|
||||
"""
|
||||
self._postprocessor = C.vision.faceid.AdaFacePostprocessor()
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for PaddleClas Model
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.5
|
||||
"""
|
||||
return self._postprocessor.l2_normalize
|
||||
|
||||
|
||||
class AdaFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a AdaFace model exported by PaddleClas.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g adaface/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g adaface/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
super(AdaFace, self).__init__(runtime_option)
|
||||
self._model = C.vision.faceid.AdaFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "AdaFace model initialize failed."
|
||||
|
||||
def predict(self, im):
|
||||
"""Detect an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: DetectionResult
|
||||
"""
|
||||
|
||||
assert im is not None, "The input image data is None."
|
||||
return self._model.predict(im)
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Detect a batch of input image list
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get AdaFacePreprocessor object of the loaded model
|
||||
|
||||
:return AdaFacePreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get AdaFacePostprocessor object of the loaded model
|
||||
|
||||
:return AdaFacePostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
@@ -1,127 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
from ..contrib.insightface_rec import InsightFaceRecognitionModel
|
||||
|
||||
|
||||
class ArcFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a ArcFace model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./arcface.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(ArcFace, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.ArcFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "ArcFace initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class CosFace(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a CosFace model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./cosface.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(CosFace, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.CosFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "CosFace initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
222
python/fastdeploy/vision/faceid/contrib/insightface/__init__.py
Normal file
222
python/fastdeploy/vision/faceid/contrib/insightface/__init__.py
Normal file
@@ -0,0 +1,222 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from ..... import FastDeployModel, ModelFormat
|
||||
from ..... import c_lib_wrap as C
|
||||
|
||||
|
||||
class InsightFaceRecognitionPreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for InsightFaceRecognition Model
|
||||
"""
|
||||
self._preprocessor = C.vision.faceid.InsightFaceRecognitionPreprocessor(
|
||||
)
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for InsightFaceRecognition Model
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor, include image, scale_factor, im_shape
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, tuple of (width, height),
|
||||
decide the target size after resize, default (112, 112)
|
||||
"""
|
||||
return self._preprocessor.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha values for normalization,
|
||||
default alpha = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
|
||||
"""
|
||||
return self._preprocessor.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization,
|
||||
default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._preprocessor.beta
|
||||
|
||||
@property
|
||||
def permute(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel,
|
||||
such as BGR->RGB, default true.
|
||||
"""
|
||||
return self._preprocessor.permute
|
||||
|
||||
|
||||
class InsightFaceRecognitionPostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for InsightFaceRecognition Model
|
||||
"""
|
||||
self._postprocessor = C.vision.faceid.InsightFaceRecognitionPostprocessor(
|
||||
)
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for PaddleClas Model
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.5
|
||||
"""
|
||||
return self._postprocessor.l2_normalize
|
||||
|
||||
|
||||
class InsightFaceRecognitionBase(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a InsightFaceRecognitionBase model exported by PaddleClas.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g InsightFaceRecognitionBase/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g InsightFaceRecognitionBase/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
self._model = C.vision.faceid.InsightFaceRecognitionBase(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "InsightFaceRecognitionBase model initialize failed."
|
||||
|
||||
def predict(self, im):
|
||||
"""Detect an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: DetectionResult
|
||||
"""
|
||||
|
||||
assert im is not None, "The input image data is None."
|
||||
return self._model.predict(im)
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Detect a batch of input image list
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get InsightFaceRecognitionPreprocessor object of the loaded model
|
||||
|
||||
:return InsightFaceRecognitionPreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get InsightFaceRecognitionPostprocessor object of the loaded model
|
||||
|
||||
:return InsightFaceRecognitionPostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
||||
|
||||
|
||||
class ArcFace(InsightFaceRecognitionBase):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a ArcFace model exported by PaddleClas.
|
||||
:param model_file: (str)Path of model file, e.g ArcFace/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g ArcFace/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.ArcFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "ArcFace model initialize failed."
|
||||
|
||||
|
||||
class CosFace(InsightFaceRecognitionBase):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a CosFace model exported by PaddleClas.
|
||||
:param model_file: (str)Path of model file, e.g CosFace/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g CosFace/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.CosFace(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "CosFace model initialize failed."
|
||||
|
||||
|
||||
class PartialFC(InsightFaceRecognitionBase):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a PartialFC model exported by PaddleClas.
|
||||
:param model_file: (str)Path of model file, e.g PartialFC/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g PartialFC/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.PartialFC(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
assert self.initialized, "PartialFC model initialize failed."
|
||||
|
||||
|
||||
class VPL(InsightFaceRecognitionBase):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a VPL model exported by PaddleClas.
|
||||
:param model_file: (str)Path of model file, e.g VPL/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g VPL/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(InsightFaceRecognitionBase, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.VPL(model_file, params_file,
|
||||
self._runtime_option, model_format)
|
||||
assert self.initialized, "VPL model initialize failed."
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class InsightFaceRecognitionModel(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a InsightFace model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./arcface.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(InsightFaceRecognitionModel, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.InsightFaceRecognitionModel(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "InsightFaceRecognitionModel initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟InsightFaceRecognitionModel模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class PartialFC(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a PartialFC model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./partial_fc.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(PartialFC, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.PartialFC(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "PartialFC initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
@@ -1,126 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class VPL(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a VPL model exported by InsigtFace.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./vpl.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(VPL, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.faceid.VPL(model_file, params_file,
|
||||
self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "VPL initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
""" Predict the face recognition result for an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:return: FaceRecognitionResult
|
||||
"""
|
||||
return self._model.predict(input_image)
|
||||
|
||||
# 一些跟模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [112, 112]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (112, 112)
|
||||
"""
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def alpha(self):
|
||||
"""
|
||||
Argument for image preprocessing step, alpha value for normalization, default alpha = [1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f]
|
||||
"""
|
||||
return self._model.alpha
|
||||
|
||||
@property
|
||||
def beta(self):
|
||||
"""
|
||||
Argument for image preprocessing step, beta values for normalization, default beta = {-1.f, -1.f, -1.f}
|
||||
"""
|
||||
return self._model.beta
|
||||
|
||||
@property
|
||||
def swap_rb(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to swap the B and R channel, such as BGR->RGB, default True.
|
||||
"""
|
||||
return self._model.swap_rb
|
||||
|
||||
@property
|
||||
def l2_normalize(self):
|
||||
"""
|
||||
Argument for image preprocessing step, whether to apply l2 normalize to embedding values, default False;
|
||||
"""
|
||||
return self._model.l2_normalize
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@alpha.setter
|
||||
def alpha(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `alpha` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.alpha = value
|
||||
|
||||
@beta.setter
|
||||
def beta(self, value):
|
||||
assert isinstance(value, (list, tuple)),\
|
||||
"The value to set `beta` must be type of tuple or list."
|
||||
assert len(value) == 3,\
|
||||
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
|
||||
len(value))
|
||||
self._model.beta = value
|
||||
|
||||
@swap_rb.setter
|
||||
def swap_rb(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `swap_rb` must be type of bool."
|
||||
self._model.swap_rb = value
|
||||
|
||||
@l2_normalize.setter
|
||||
def l2_normalize(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `l2_normalize` must be type of bool."
|
||||
self._model.l2_normalize = value
|
Reference in New Issue
Block a user