add more tests

This commit is contained in:
jiangjiajun
2022-11-15 02:51:09 +00:00
parent beaa0fd190
commit eb48d6cbec
6 changed files with 307 additions and 9 deletions

View File

@@ -66,5 +66,55 @@ def test_detection_faster_rcnn():
# with open("faster_rcnn_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
def test_detection_faster_rcnn1():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/faster_rcnn_baseline.pkl"
fd.download_and_decompress(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url, "resources")
model_path = "resources/faster_rcnn_r50_vd_fpn_2x_coco"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
option = rc.test_option
option.set_model_path(model_file, params_file)
option.use_paddle_infer_backend()
runtime = fd.Runtime(option);
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
im1 = cv2.imread("./resources/000000014439.jpg")
input_tensors = preprocessor.run([im1])
output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1], "im_shape": input_tensors[2]})
results = postprocessor.run(output_tensors)
result = results[0]
with open("resources/faster_rcnn_baseline.pkl", "rb") as f:
boxes, scores, label_ids = pickle.load(f)
pred_boxes = np.array(result.boxes)
pred_scores = np.array(result.scores)
pred_label_ids = np.array(result.label_ids)
diff_boxes = np.fabs(boxes - pred_boxes)
diff_scores = np.fabs(scores - pred_scores)
diff_label_ids = np.fabs(label_ids - pred_label_ids)
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
score_threshold = 0.0
assert diff_boxes[scores > score_threshold].max(
) < 1e-04, "There's diff in boxes."
assert diff_scores[scores > score_threshold].max(
) < 1e-04, "There's diff in scores."
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
if __name__ == "__main__":
test_detection_faster_rcnn()
test_detection_faster_rcnn1()

View File

@@ -13,6 +13,7 @@
# limitations under the License.
import fastdeploy as fd
import copy
import cv2
import os
import pickle
@@ -38,7 +39,61 @@ def test_detection_mask_rcnn():
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
with open("resources/mask_rcnn_baseline.pkl", "rb") as f:
boxes, scores, label_ids = pickle.load(f)
result = model.predict(im1)
pred_boxes = np.array(result.boxes)
pred_scores = np.array(result.scores)
pred_label_ids = np.array(result.label_ids)
diff_boxes = np.fabs(boxes - pred_boxes)
diff_scores = np.fabs(scores - pred_scores)
diff_label_ids = np.fabs(label_ids - pred_label_ids)
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
score_threshold = 0.0
assert diff_boxes[scores > score_threshold].max(
) < 1e-01, "There's diff in boxes."
assert diff_scores[scores > score_threshold].max(
) < 1e-02, "There's diff in scores."
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
# result = model.predict(im1)
# with open("mask_rcnn_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
def test_detection_mask_rcnn1():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/mask_rcnn_baseline.pkl"
fd.download_and_decompress(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url, "resources")
model_path = "resources/mask_rcnn_r50_1x_coco"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
option = rc.test_option
option.set_model_path(model_file, params_file)
option.use_paddle_infer_backend()
runtime = fd.Runtime(option);
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
im1 = cv2.imread("./resources/000000014439.jpg")
input_tensors = preprocessor.run([im1])
output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1], "im_shape": input_tensors[2]})
results = postprocessor.run(output_tensors)
result = results[0]
with open("resources/mask_rcnn_baseline.pkl", "rb") as f:
boxes, scores, label_ids = pickle.load(f)
pred_boxes = np.array(result.boxes)
@@ -53,16 +108,12 @@ def test_detection_mask_rcnn():
score_threshold = 0.0
assert diff_boxes[scores > score_threshold].max(
) < 1e-04, "There's diff in boxes."
) < 1e-01, "There's diff in boxes."
assert diff_scores[scores > score_threshold].max(
) < 1e-04, "There's diff in scores."
) < 1e-02, "There's diff in scores."
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
# result = model.predict(im1)
# with open("mask_rcnn_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
if __name__ == "__main__":
test_detection_mask_rcnn()
test_detection_mask_rcnn1()

View File

@@ -36,6 +36,12 @@ def test_detection_picodet():
model = fd.vision.detection.PicoDet(
model_file, params_file, config_file, runtime_option=rc.test_option)
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
rc.test_option.set_model_path(model_file, params_file)
runtime = fd.Runtime(rc.test_option);
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
@@ -65,5 +71,54 @@ def test_detection_picodet():
# with open("picodet_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
def test_detection_picodet1():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/picodet_l_320_coco_lcnet.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/picodet_baseline.pkl"
fd.download_and_decompress(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url, "resources")
model_path = "resources/picodet_l_320_coco_lcnet"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
rc.test_option.set_model_path(model_file, params_file)
runtime = fd.Runtime(rc.test_option);
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
input_tensors = preprocessor.run([im1])
output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1]})
results = postprocessor.run(output_tensors)
result = results[0]
with open("resources/picodet_baseline.pkl", "rb") as f:
boxes, scores, label_ids = pickle.load(f)
pred_boxes = np.array(result.boxes)
pred_scores = np.array(result.scores)
pred_label_ids = np.array(result.label_ids)
diff_boxes = np.fabs(boxes - pred_boxes)
diff_scores = np.fabs(scores - pred_scores)
diff_label_ids = np.fabs(label_ids - pred_label_ids)
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
with open("resources/dump_result.pkl", "wb") as f:
pickle.dump([pred_boxes, pred_scores, pred_label_ids], f)
score_threshold = 0.0
assert diff_boxes[scores > score_threshold].max(
) < 1e-01, "There's diff in boxes."
assert diff_scores[scores > score_threshold].max(
) < 1e-03, "There's diff in scores."
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
if __name__ == "__main__":
test_detection_picodet()
test_detection_picodet1()

View File

@@ -66,5 +66,52 @@ def test_detection_yolox():
# with open("ppyolox_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
def test_detection_yolox_1():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s_300e_coco.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/ppyolox_baseline.pkl"
fd.download_and_decompress(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url, "resources")
model_path = "resources/yolox_s_300e_coco"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
rc.test_option.set_model_path(model_file, params_file)
runtime = fd.Runtime(rc.test_option);
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(3):
input_tensors = preprocessor.run([im1])
output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1]})
results = postprocessor.run(output_tensors)
result = results[0]
with open("resources/ppyolox_baseline.pkl", "rb") as f:
boxes, scores, label_ids = pickle.load(f)
pred_boxes = np.array(result.boxes)
pred_scores = np.array(result.scores)
pred_label_ids = np.array(result.label_ids)
diff_boxes = np.fabs(boxes - pred_boxes)
diff_scores = np.fabs(scores - pred_scores)
diff_label_ids = np.fabs(label_ids - pred_label_ids)
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
score_threshold = 0.0
assert diff_boxes[scores > score_threshold].max(
) < 1e-01, "There's diff in boxes."
assert diff_scores[scores > score_threshold].max(
) < 1e-02, "There's diff in scores."
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
if __name__ == "__main__":
test_detection_yolox()
test_detection_yolox_1()

View File

@@ -65,5 +65,56 @@ def test_detection_ppyolo():
# with open("ppyolo_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
def test_detection_ppyolo1():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyolov2_r101vd_dcn_365e_coco.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/ppyolo_baseline.pkl"
fd.download_and_decompress(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url, "resources")
model_path = "resources/ppyolov2_r101vd_dcn_365e_coco"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
option = rc.test_option
option.use_paddle_backend()
option.set_model_path(model_file, params_file)
runtime = fd.Runtime(option);
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
input_tensors = preprocessor.run([im1])
output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1], "im_shape": input_tensors[2]})
results = postprocessor.run(output_tensors)
result = results[0]
with open("resources/ppyolo_baseline.pkl", "rb") as f:
boxes, scores, label_ids = pickle.load(f)
pred_boxes = np.array(result.boxes)
pred_scores = np.array(result.scores)
pred_label_ids = np.array(result.label_ids)
diff_boxes = np.fabs(boxes - pred_boxes)
diff_scores = np.fabs(scores - pred_scores)
diff_label_ids = np.fabs(label_ids - pred_label_ids)
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
with open("resources/dump_result.pkl", "wb") as f:
pickle.dump([pred_boxes, pred_scores, pred_label_ids], f)
score_threshold = 0.0
assert diff_boxes[scores > score_threshold].max(
) < 1e-01, "There's diff in boxes."
assert diff_scores[scores > score_threshold].max(
) < 1e-03, "There's diff in scores."
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
if __name__ == "__main__":
test_detection_ppyolo()
test_detection_ppyolo1()

View File

@@ -60,9 +60,53 @@ def test_detection_ppyoloe():
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
def test_detection_ppyoloe1():
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz"
input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg"
result_url = "https://bj.bcebos.com/fastdeploy/tests/data/ppyoloe_baseline.pkl"
fd.download_and_decompress(model_url, "resources")
fd.download(input_url1, "resources")
fd.download(result_url, "resources")
model_path = "resources/ppyoloe_crn_l_300e_coco"
model_file = os.path.join(model_path, "model.pdmodel")
params_file = os.path.join(model_path, "model.pdiparams")
config_file = os.path.join(model_path, "infer_cfg.yml")
preprocessor = fd.vision.detection.PaddleDetPreprocessor(config_file)
postprocessor = fd.vision.detection.PaddleDetPostprocessor()
rc.test_option.set_model_path(model_file, params_file)
runtime = fd.Runtime(rc.test_option);
# compare diff
im1 = cv2.imread("./resources/000000014439.jpg")
for i in range(2):
input_tensors = preprocessor.run([im1])
output_tensors = runtime.infer({"image": input_tensors[0], "scale_factor": input_tensors[1]})
results = postprocessor.run(output_tensors)
result = results[0]
with open("resources/ppyoloe_baseline.pkl", "rb") as f:
boxes, scores, label_ids = pickle.load(f)
pred_boxes = np.array(result.boxes)
pred_scores = np.array(result.scores)
pred_label_ids = np.array(result.label_ids)
diff_boxes = np.fabs(boxes - pred_boxes)
diff_scores = np.fabs(scores - pred_scores)
diff_label_ids = np.fabs(label_ids - pred_label_ids)
print(diff_boxes.max(), diff_scores.max(), diff_label_ids.max())
score_threshold = 0.0
assert diff_boxes[scores > score_threshold].max(
) < 1e-01, "There's diff in boxes."
assert diff_scores[scores > score_threshold].max(
) < 1e-02, "There's diff in scores."
assert diff_label_ids[scores > score_threshold].max(
) < 1e-04, "There's diff in label_ids."
# with open("ppyoloe_baseline.pkl", "wb") as f:
# pickle.dump([np.array(result.boxes), np.array(result.scores), np.array(result.label_ids)], f)
if __name__ == "__main__":
test_detection_ppyoloe()
test_detection_ppyoloe1()