Update PPYOLOE README.md (#133)

* Update README.md

* Update README.md

* Update README.md

* Create README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add evaluation calculate time and fix some bugs

* Update classification __init__

* Move to ppseg

* Add segmentation doc

* Add PaddleClas infer.py

* Update PaddleClas infer.py

* Delete .infer.py.swp

* Add PaddleClas infer.cc

* Update README.md

* Update README.md

* Update README.md

* Update infer.py

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Add PaddleSeg doc and infer.cc demo

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Create segmentation_result.md

* Update README.md

* Update segmentation_result.md

* Update segmentation_result.md

* Update segmentation_result.md

* Update classification and detection evaluation function

* Fix python grammar bug

* Update README.md

* Update README.md

* Update README.md

* Update README.md

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-08-18 21:24:29 +08:00
committed by GitHub
parent 7a58d50299
commit eaa017fb09
2 changed files with 15 additions and 12 deletions

View File

@@ -10,26 +10,28 @@
以Linux上推理为例在本目录执行如下命令即可完成编译测试
```
以ppyoloe为例进行推理部署
#下载SDK编译模型examples代码SDK中包含了examples代码
wget https://bj.bcebos.com/paddlehub/fastdeploy/libs/0.2.0/fastdeploy-linux-x64-gpu-0.2.0.tgz
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.2.0.tgz
cd fastdeploy-linux-x64-gpu-0.2.0/examples/vision/detection/paddledetection
cd fastdeploy-linux-x64-gpu-0.2.0/examples/vision/detection/paddledetection/cpp
mkdir build && cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.2.0
make -j
# 下载PPYOLOE模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/picodet_l_320_coco_lcnet.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000087038.jpg
tar xvf picodet_l_320_coco_lcnet.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz
# CPU推理
./infer_ppyoloe_demo ./picodet_l_320_coco_lcnet 000000087038.jpg 0
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
# GPU推理
./infer_ppyoloe_demo ./picodet_l_320_coco_lcnet 000000087038.jpg 1
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
# GPU上TensorRT推理
./infer_ppyoloe_demo ./picodet_l_320_coco_lcnet 000000087038.jpg 2
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
```
## PaddleDetection C++接口

View File

@@ -8,10 +8,11 @@
本目录下提供`infer_xxx.py`快速完成PPYOLOE/PicoDet等模型在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```
以ppyoloe为例进行推理部署
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/detection/paddledetection/python/
cd FastDeploy/examples/vision/detection/paddledetection/python/
#下载PPYOLOE模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
@@ -19,11 +20,11 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
tar xvf ppyoloe_crn_l_300e_coco.tgz
# CPU推理
python infer.py --model_dir ppyoloe_crn_l_300e_coco --image 000000087038.jpg --device cpu
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device cpu
# GPU推理
python infer.py --model_dir ppyoloe_crn_l_300e_coco --image 000000087038.jpg --device gpu
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model_dir ppyoloe_crn_l_300e_coco --image 000000087038.jpg --device gpu --use_trt True
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示