Add with_output version AppendAttention (#3302)

* get use_output from fd_config

* add clear TODO description

* add mask_offset para to align with develop

* fix bug

* fix use_output logic

* fix sot bug
This commit is contained in:
Liumengyuan
2025-08-28 17:10:18 +08:00
committed by GitHub
parent 94ded434bd
commit e93d4cfcdd
8 changed files with 1366 additions and 96 deletions

View File

@@ -38,7 +38,7 @@ class type2value<phi::dtype::float16> {
template <paddle::DataType D> template <paddle::DataType D>
std::vector<paddle::Tensor> AppendAttentionKernel( void AppendAttentionKernel(
const AppendAttnMetaData& meta_data, const AppendAttnMetaData& meta_data,
const paddle::Tensor& qkv, const paddle::Tensor& qkv,
const paddle::Tensor& key_cache, const paddle::Tensor& key_cache,
@@ -60,6 +60,7 @@ std::vector<paddle::Tensor> AppendAttentionKernel(
const paddle::Tensor& decoder_num_blocks, const paddle::Tensor& decoder_num_blocks,
const paddle::Tensor& set_max_lengths, const paddle::Tensor& set_max_lengths,
const paddle::Tensor& max_len_kv, const paddle::Tensor& max_len_kv,
paddle::Tensor& fmha_out,
const paddle::optional<paddle::Tensor>& rotary_embs, const paddle::optional<paddle::Tensor>& rotary_embs,
const paddle::optional<paddle::Tensor>& attn_mask, const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& qkv_bias, const paddle::optional<paddle::Tensor>& qkv_bias,
@@ -122,27 +123,6 @@ std::vector<paddle::Tensor> AppendAttentionKernel(
} else { } else {
qkv_out = qkv; qkv_out = qkv;
} }
paddle::Tensor fmha_out;
if (out_linear_in_scale > 0.0) {
if (fabs(quant_max_bound - 127.0f) < 0.000001) {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
paddle::DataType::INT8,
qkv.place());
} else if (fabs(quant_max_bound - 448.0f) < 0.000001) {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
paddle::DataType::FLOAT8_E4M3FN,
qkv.place());
}else{
PD_THROW("Only supported attr of quant_max_bound in ['127', '448'].");
}
} else {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
D,
qkv.place());
}
auto dispatch_CascadeAppendAttentionKernel = [&](auto temp_args, auto dispatch_CascadeAppendAttentionKernel = [&](auto temp_args,
const paddle::Tensor& lambda_batch_ids, const paddle::Tensor& lambda_batch_ids,
@@ -405,8 +385,6 @@ std::vector<paddle::Tensor> AppendAttentionKernel(
cudaStreamWaitEvent(main_stream, decoder_event); cudaStreamWaitEvent(main_stream, decoder_event);
} }
} }
return {fmha_out, qkv_out};
} }
std::vector<paddle::Tensor> AppendAttention( std::vector<paddle::Tensor> AppendAttention(
@@ -481,12 +459,60 @@ std::vector<paddle::Tensor> AppendAttention(
meta_data.block_size = key_cache.dims()[2]; meta_data.block_size = key_cache.dims()[2];
meta_data.batch_size = seq_lens_this_time.dims()[0]; meta_data.batch_size = seq_lens_this_time.dims()[0];
// template dtype generation
phi::DataType dtype_id;
switch (qkv.dtype()) {
case paddle::DataType::FLOAT16: {dtype_id = phi::DataType::FLOAT16; break;}
case paddle::DataType::BFLOAT16: {dtype_id = phi::DataType::BFLOAT16; break;}
case paddle::DataType::INT32: {
if (compute_dtype == "bf16") {
dtype_id = phi::DataType::BFLOAT16;
break;
} else if (compute_dtype == "fp16") {
dtype_id = phi::DataType::FLOAT16;
break;
} else {
PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16'].");
break;
}
}
default: {
PD_THROW(
"NOT supported data type. "
"Only float16 and bfloat16 are supported. ");
break;
}
}
// fmha_out generation, rewrite from AppendAttentionKernel
paddle::Tensor fmha_out;
if (out_linear_in_scale > 0.0) {
if (fabs(quant_max_bound - 127.0f) < 0.000001) {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
paddle::DataType::INT8,
qkv.place());
} else if (fabs(quant_max_bound - 448.0f) < 0.000001) {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
paddle::DataType::FLOAT8_E4M3FN,
qkv.place());
} else{
PD_THROW("Only supported attr of quant_max_bound in ['127', '448'].");
}
} else {
fmha_out = GetEmptyTensor(
{meta_data.token_nums, meta_data.q_num_heads * meta_data.head_dims},
dtype_id,
qkv.place());
}
if (mask_offset) { if (mask_offset) {
meta_data.mask_offset = mask_offset.get().data<int>(); meta_data.mask_offset = mask_offset.get().data<int>();
} }
auto dispatch_by_template = [&](auto temp_args) -> std::vector<paddle::Tensor> { auto dispatch_by_template = [&](auto temp_args) -> void {
return AppendAttentionKernel<type2value<decltype(temp_args)>::value>( AppendAttentionKernel<type2value<decltype(temp_args)>::value>(
meta_data, meta_data,
qkv, qkv,
key_cache, key_cache,
@@ -508,6 +534,7 @@ std::vector<paddle::Tensor> AppendAttention(
decoder_num_blocks, decoder_num_blocks,
set_max_lengths, set_max_lengths,
max_len_kv, max_len_kv,
fmha_out,
rotary_embs, rotary_embs,
attn_mask, attn_mask,
qkv_bias, qkv_bias,
@@ -539,20 +566,183 @@ std::vector<paddle::Tensor> AppendAttention(
speculate_max_draft_token_num, speculate_max_draft_token_num,
causal, causal,
speculate_decoder); speculate_decoder);
};
phi::dtype::float16 fp16_dtype;
phi::dtype::bfloat16 bp16_dtype;
switch (dtype_id){
case phi::DataType::FLOAT16: {
dispatch_by_template(fp16_dtype);
return {fmha_out};
}
case phi::DataType::BFLOAT16: {
dispatch_by_template(bp16_dtype);
return {fmha_out};
}
default:
PD_THROW(
"NOT supported data type. "
"Only float16 and bfloat16 are supported. ");
break;
}
return {paddle::Tensor{}};
}
void AppendAttentionWithOutput(
const paddle::Tensor& qkv,
const paddle::Tensor& key_cache,
const paddle::Tensor& value_cache,
const paddle::Tensor& seq_lens_encoder,
const paddle::Tensor& seq_lens_decoder,
const paddle::Tensor& seq_lens_this_time,
const paddle::Tensor& batch_id_per_token,
const paddle::Tensor& cu_seqlens_q,
const paddle::Tensor& block_tables,
const paddle::Tensor& encoder_batch_ids,
const paddle::Tensor& encoder_tile_ids_per_batch,
const paddle::Tensor& encoder_num_blocks,
const paddle::Tensor& kv_batch_ids,
const paddle::Tensor& kv_tile_ids_per_batch,
const paddle::Tensor& kv_num_blocks,
const paddle::Tensor& decoder_batch_ids,
const paddle::Tensor& decoder_tile_ids_per_batch,
const paddle::Tensor& decoder_num_blocks,
const paddle::Tensor& set_max_lengths,
const paddle::Tensor& max_len_kv,
paddle::Tensor& fmha_out,
const paddle::optional<paddle::Tensor>& rotary_embs,
const paddle::optional<paddle::Tensor>& attn_mask,
const paddle::optional<paddle::Tensor>& qkv_bias,
const paddle::optional<paddle::Tensor>& qkv_out_scales,
const paddle::optional<paddle::Tensor>& cache_k_quant_scales,
const paddle::optional<paddle::Tensor>& cache_v_quant_scales,
const paddle::optional<paddle::Tensor>& cache_k_dequant_scales,
const paddle::optional<paddle::Tensor>& cache_v_dequant_scales,
const paddle::optional<paddle::Tensor>& cache_k_zp,
const paddle::optional<paddle::Tensor>& cache_v_zp,
const paddle::optional<paddle::Tensor>& out_linear_shifts,
const paddle::optional<paddle::Tensor>& out_linear_smooths,
const paddle::optional<paddle::Tensor>& mask_offset,
const paddle::optional<paddle::Tensor>& kv_signal_data,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_input_length,
const float quant_max_bound,
const float quant_min_bound,
const float out_linear_in_scale,
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder) {
AppendAttnMetaData meta_data;
const auto& qkv_dims = qkv.dims();
const auto& key_cache_dims = key_cache.dims();
meta_data.token_nums = qkv_dims[0];
meta_data.kv_num_heads = key_cache_dims[1];
meta_data.head_dims = key_cache_dims[3];
// TODO: trick method support c4, add attr head_dims in the future
if (cache_quant_type_str == "cache_int4_zp") {
meta_data.head_dims *= 2;
}
const int total_num_head =
qkv_dims[qkv_dims.size() - 1] / meta_data.head_dims;
meta_data.q_num_heads = total_num_head - 2 * meta_data.kv_num_heads;
meta_data.max_blocks_per_seq = block_tables.dims()[1];
meta_data.block_size = key_cache.dims()[2];
meta_data.batch_size = seq_lens_this_time.dims()[0];
if (mask_offset) {
meta_data.mask_offset = mask_offset.get().data<int>();
}
auto dispatch_by_template = [&](auto temp_args) -> void {
AppendAttentionKernel<type2value<decltype(temp_args)>::value>(
meta_data,
qkv,
key_cache,
value_cache,
seq_lens_encoder,
seq_lens_decoder,
seq_lens_this_time,
batch_id_per_token,
cu_seqlens_q,
block_tables,
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
decoder_batch_ids,
decoder_tile_ids_per_batch,
decoder_num_blocks,
set_max_lengths,
max_len_kv,
fmha_out,
rotary_embs,
attn_mask,
qkv_bias,
qkv_out_scales,
cache_k_quant_scales,
cache_v_quant_scales,
cache_k_dequant_scales,
cache_v_dequant_scales,
cache_k_zp,
cache_v_zp,
out_linear_shifts,
out_linear_smooths,
mask_offset,
kv_signal_data,
q_norm_weight,
k_norm_weight,
rms_norm_eps,
cache_quant_type_str,
use_neox_rotary_style,
rope_3d,
max_input_length,
quant_max_bound,
quant_min_bound,
out_linear_in_scale,
encoder_block_shape_q,
decoder_block_shape_q,
max_partition_size,
encoder_max_partition_size,
speculate_max_draft_token_num,
causal,
speculate_decoder);
}; };
phi::dtype::float16 fp16_dtype; phi::dtype::float16 fp16_dtype;
phi::dtype::bfloat16 bp16_dtype; phi::dtype::bfloat16 bp16_dtype;
switch (qkv.dtype()) { switch (qkv.dtype()) {
case paddle::DataType::FLOAT16: return dispatch_by_template(fp16_dtype); case paddle::DataType::FLOAT16: {
case paddle::DataType::BFLOAT16: return dispatch_by_template(bp16_dtype); dispatch_by_template(fp16_dtype);
break;
}
case paddle::DataType::BFLOAT16: {
dispatch_by_template(bp16_dtype);
break;
}
case paddle::DataType::INT32: { case paddle::DataType::INT32: {
if (compute_dtype == "bf16") { if (compute_dtype == "bf16") {
return dispatch_by_template(bp16_dtype); dispatch_by_template(bp16_dtype);
break;
} else if (compute_dtype == "fp16") { } else if (compute_dtype == "fp16") {
return dispatch_by_template(fp16_dtype); dispatch_by_template(fp16_dtype);
break;
} else { } else {
PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16']."); PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16'].");
break; break;
@@ -565,9 +755,9 @@ std::vector<paddle::Tensor> AppendAttention(
break; break;
} }
} }
return {paddle::Tensor{}};
} }
std::vector<std::vector<int64_t>> AppendAttentionInferShape( std::vector<std::vector<int64_t>> AppendAttentionInferShape(
const std::vector<int64_t>& qkv_shape, const std::vector<int64_t>& qkv_shape,
const std::vector<int64_t>& key_cache_shape, const std::vector<int64_t>& key_cache_shape,
@@ -629,7 +819,7 @@ std::vector<std::vector<int64_t>> AppendAttentionInferShape(
} }
const int total_num_head = qkv_shape[qkv_shape.size() - 1] / head_dim; const int total_num_head = qkv_shape[qkv_shape.size() - 1] / head_dim;
const int num_heads = total_num_head - 2 * kv_num_heads; const int num_heads = total_num_head - 2 * kv_num_heads;
return {{token_num, num_heads * head_dim}, qkv_shape}; return {{token_num, num_heads * head_dim}};
} }
std::vector<paddle::DataType> AppendAttentionInferDtype( std::vector<paddle::DataType> AppendAttentionInferDtype(
@@ -688,32 +878,148 @@ std::vector<paddle::DataType> AppendAttentionInferDtype(
if (compute_dtype == "bf16") { if (compute_dtype == "bf16") {
if (out_linear_in_scale > 0.0) { if (out_linear_in_scale > 0.0) {
if (fabs(quant_max_bound - 127.0f) < 0.000001) { if (fabs(quant_max_bound - 127.0f) < 0.000001) {
return {paddle::DataType::INT8, paddle::DataType::BFLOAT16}; return {paddle::DataType::INT8};
} else if (fabs(quant_max_bound - 448.0f) < 0.000001) { } else if (fabs(quant_max_bound - 448.0f) < 0.000001) {
return {paddle::DataType::FLOAT8_E4M3FN, paddle::DataType::BFLOAT16}; return {paddle::DataType::FLOAT8_E4M3FN};
}else{ }else{
PD_THROW("Only supported attr of quant_max_bound in ['127.0', '448.0']."); PD_THROW("Only supported attr of quant_max_bound in ['127.0', '448.0'].");
} }
} else { } else {
return {paddle::DataType::BFLOAT16, paddle::DataType::BFLOAT16}; return {paddle::DataType::BFLOAT16};
} }
} else if (compute_dtype == "fp16") { } else if (compute_dtype == "fp16") {
if (out_linear_in_scale > 0.0) { if (out_linear_in_scale > 0.0) {
if (fabs(quant_max_bound - 127.0f) < 0.000001) { if (fabs(quant_max_bound - 127.0f) < 0.000001) {
return {paddle::DataType::INT8, paddle::DataType::FLOAT16}; return {paddle::DataType::INT8};
} else if (fabs(quant_max_bound - 448.0f) < 0.000001) { } else if (fabs(quant_max_bound - 448.0f) < 0.000001) {
return {paddle::DataType::FLOAT8_E4M3FN, paddle::DataType::FLOAT16}; return {paddle::DataType::FLOAT8_E4M3FN};
}else{ }else{
PD_THROW("Only supported attr of quant_max_bound in ['127.0', '448.0']."); PD_THROW("Only supported attr of quant_max_bound in ['127.0', '448.0'].");
} }
} else { } else {
return {paddle::DataType::FLOAT16, paddle::DataType::FLOAT16}; return {paddle::DataType::FLOAT16};
} }
} else { } else {
PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16']."); PD_THROW("Only supported attr of compute_dtype in ['fp16', 'bf16'].");
} }
} }
std::vector<std::vector<int64_t>> AppendAttentionWithOutputInferShape(
const std::vector<int64_t>& qkv_shape,
const std::vector<int64_t>& key_cache_shape,
const std::vector<int64_t>& value_cache_shape,
const std::vector<int64_t>& seq_lens_encoder_shape,
const std::vector<int64_t>& seq_lens_decoder_shape,
const std::vector<int64_t>& seq_lens_this_time_shape,
const std::vector<int64_t>& batch_id_per_token_shape,
const std::vector<int64_t>& cu_seqlens_q_shape,
const std::vector<int64_t>& block_tables_shape,
const std::vector<int64_t>& encoder_batch_ids_shape,
const std::vector<int64_t>& encoder_tile_ids_per_batch_shape,
const std::vector<int64_t>& encoder_num_blocks_shape,
const std::vector<int64_t>& kv_batch_ids_shape,
const std::vector<int64_t>& kv_tile_ids_per_batch_shape,
const std::vector<int64_t>& kv_num_blocks_shape,
const std::vector<int64_t>& decoder_batch_ids_shape,
const std::vector<int64_t>& decoder_tile_ids_per_batch_shape,
const std::vector<int64_t>& decoder_num_blocks_shape,
const std::vector<int64_t>& set_max_lengths_shape,
const std::vector<int64_t>& max_len_kv_shape,
const std::vector<int64_t>& fmha_out_shape,
const paddle::optional<std::vector<int64_t>>& rotary_embs_shape,
const paddle::optional<std::vector<int64_t>>& attn_mask_shape,
const paddle::optional<std::vector<int64_t>>& qkv_bias_shape,
const paddle::optional<std::vector<int64_t>>& qkv_out_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_k_quant_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_v_quant_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_k_dequant_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_v_dequant_scales_shape,
const paddle::optional<std::vector<int64_t>>& cache_k_zp_shape,
const paddle::optional<std::vector<int64_t>>& cache_v_zp_shape,
const paddle::optional<std::vector<int64_t>>& out_linear_shifts_shape,
const paddle::optional<std::vector<int64_t>>& out_linear_smooths_shape,
const paddle::optional<std::vector<int64_t>>& mask_offset_shape,
const paddle::optional<std::vector<int64_t>>& kv_signal_data_shape,
const paddle::optional<std::vector<int64_t>>& q_norm_weight_shape,
const paddle::optional<std::vector<int64_t>>& k_norm_weight_shape,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_input_length,
const float quant_max_bound,
const float quant_min_bound,
const float out_linear_in_scale,
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder) {
return {fmha_out_shape};
}
std::vector<paddle::DataType> AppendAttentionWithOutputInferDtype(
const paddle::DataType& qkv_dtype,
const paddle::DataType& key_cache_dtype,
const paddle::DataType& value_cache_dtype,
const paddle::DataType& seq_lens_encoder_dtype,
const paddle::DataType& seq_lens_decoder_dtype,
const paddle::DataType& seq_lens_this_time_dtype,
const paddle::DataType& batch_id_per_token_dtype,
const paddle::DataType& cu_seqlens_q_dtype,
const paddle::DataType& block_tables_dtype,
const paddle::DataType& encoder_batch_ids_dtype,
const paddle::DataType& encoder_tile_ids_per_batch_dtype,
const paddle::DataType& encoder_num_blocks_dtype,
const paddle::DataType& kv_batch_ids_dtype,
const paddle::DataType& kv_tile_ids_per_batch_dtype,
const paddle::DataType& kv_num_blocks_dtype,
const paddle::DataType& decoder_batch_ids_dtype,
const paddle::DataType& decoder_tile_ids_per_batch_dtype,
const paddle::DataType& decoder_num_blocks_dtype,
const paddle::DataType& set_max_lengths_dtype,
const paddle::DataType& max_len_kv_dtype,
const paddle::DataType& fmha_out_dtype,
const paddle::optional<paddle::DataType>& rotary_embs_dtype,
const paddle::optional<paddle::DataType>& attn_mask_dtype,
const paddle::optional<paddle::DataType>& qkv_bias_dtype,
const paddle::optional<paddle::DataType>& qkv_out_scales_dtype,
const paddle::optional<paddle::DataType>& cache_k_quant_scales_dtype,
const paddle::optional<paddle::DataType>& cache_v_quant_scales_dtype,
const paddle::optional<paddle::DataType>& cache_k_dequant_scales_dtype,
const paddle::optional<paddle::DataType>& cache_v_dequant_scales_dtype,
const paddle::optional<paddle::DataType>& cache_k_zp_dtype,
const paddle::optional<paddle::DataType>& cache_v_zp_dtype,
const paddle::optional<paddle::DataType>& out_linear_shifts_dtype,
const paddle::optional<paddle::DataType>& out_linear_smooths_dtype,
const paddle::optional<paddle::DataType>& mask_offset_dtype,
const paddle::optional<paddle::DataType>& kv_signal_data_dtype,
const paddle::optional<paddle::DataType>& q_norm_weight_dtype,
const paddle::optional<paddle::DataType>& k_norm_weight_dtype,
const float rms_norm_eps,
const std::string& compute_dtype,
const std::string& cache_quant_type_str,
const bool use_neox_rotary_style,
const bool rope_3d,
const int max_input_length,
const float quant_max_bound,
const float quant_min_bound,
const float out_linear_in_scale,
const int encoder_block_shape_q,
const int decoder_block_shape_q,
const int max_partition_size,
const int encoder_max_partition_size,
const int speculate_max_draft_token_num,
const bool causal,
const bool speculate_decoder) {
return {fmha_out_dtype};
}
PD_BUILD_STATIC_OP(append_attention) PD_BUILD_STATIC_OP(append_attention)
.Inputs({"qkv", .Inputs({"qkv",
"key_cache", "key_cache",
@@ -751,7 +1057,7 @@ PD_BUILD_STATIC_OP(append_attention)
paddle::Optional("kv_signal_data"), paddle::Optional("kv_signal_data"),
paddle::Optional("q_norm_weight"), paddle::Optional("q_norm_weight"),
paddle::Optional("k_norm_weight")}) paddle::Optional("k_norm_weight")})
.Outputs({"fmha_out", "qkv_out", "key_cache_out", "value_cache_out"}) .Outputs({"fmha_out", "key_cache_out", "value_cache_out"})
.SetInplaceMap({{"key_cache", "key_cache_out"}, .SetInplaceMap({{"key_cache", "key_cache_out"},
{"value_cache", "value_cache_out"}}) {"value_cache", "value_cache_out"}})
.Attrs({"rms_norm_eps: float", .Attrs({"rms_norm_eps: float",
@@ -774,3 +1080,66 @@ PD_BUILD_STATIC_OP(append_attention)
.SetKernelFn(PD_KERNEL(AppendAttention)) .SetKernelFn(PD_KERNEL(AppendAttention))
.SetInferShapeFn(PD_INFER_SHAPE(AppendAttentionInferShape)) .SetInferShapeFn(PD_INFER_SHAPE(AppendAttentionInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(AppendAttentionInferDtype)); .SetInferDtypeFn(PD_INFER_DTYPE(AppendAttentionInferDtype));
PD_BUILD_STATIC_OP(append_attention_with_output)
.Inputs({"qkv",
"key_cache",
"value_cache",
"seq_lens_encoder",
"seq_lens_decoder",
"seq_lens_this_time",
"batch_id_per_token",
"cu_seqlens_q",
"block_tables",
"encoder_batch_ids",
"encoder_tile_ids_per_batch",
"encoder_num_blocks",
"kv_batch_ids",
"kv_tile_ids_per_batch",
"kv_num_blocks",
"decoder_batch_ids",
"decoder_tile_ids_per_batch",
"decoder_num_blocks",
"set_max_lengths",
"max_len_kv",
"fmha_out",
paddle::Optional("rotary_embs"),
paddle::Optional("attn_mask"),
paddle::Optional("qkv_bias"),
paddle::Optional("qkv_out_scales"),
paddle::Optional("cache_k_quant_scales"),
paddle::Optional("cache_v_quant_scales"),
paddle::Optional("cache_k_dequant_scales"),
paddle::Optional("cache_v_dequant_scales"),
paddle::Optional("cache_k_zp"),
paddle::Optional("cache_v_zp"),
paddle::Optional("out_linear_shifts"),
paddle::Optional("out_linear_smooths"),
paddle::Optional("mask_offset"),
paddle::Optional("kv_signal_data"),
paddle::Optional("q_norm_weight"),
paddle::Optional("k_norm_weight")})
.Outputs({"fmha_out_out", "qkv_out", "key_cache_out", "value_cache_out"})
.SetInplaceMap({{"fmha_out", "fmha_out_out"},
{"key_cache", "key_cache_out"},
{"value_cache", "value_cache_out"}})
.Attrs({"rms_norm_eps: float",
"compute_type: std::string",
"cache_quant_type: std::string",
"use_neox_rotary_style: bool",
"rope_3d: bool",
"max_input_length: int",
"quant_max_bound: float",
"quant_min_bound: float",
"out_linear_in_scale: float",
"encoder_block_shape_q: int",
"decoder_block_shape_q: int",
"max_partition_size: int",
"encoder_max_partition_size: int",
"speculate_max_draft_token_num: int",
"causal: bool",
"speculate_decoder: bool",
})
.SetKernelFn(PD_KERNEL(AppendAttentionWithOutput))
.SetInferShapeFn(PD_INFER_SHAPE(AppendAttentionWithOutputInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(AppendAttentionWithOutputInferDtype));

View File

@@ -91,6 +91,49 @@ std::vector<paddle::Tensor> AppendAttention(
const int speculate_max_draft_token_num, const bool causal, const int speculate_max_draft_token_num, const bool causal,
const bool speculate_decoder); const bool speculate_decoder);
void AppendAttentionWithOutput(
const paddle::Tensor &qkv, const paddle::Tensor &key_cache,
const paddle::Tensor &value_cache, const paddle::Tensor &seq_lens_encoder,
const paddle::Tensor &seq_lens_decoder,
const paddle::Tensor &seq_lens_this_time,
const paddle::Tensor &batch_id_per_token, const paddle::Tensor &cu_seqlens_q,
const paddle::Tensor &block_tables, const paddle::Tensor &encoder_batch_ids,
const paddle::Tensor &encoder_tile_ids_per_batch,
const paddle::Tensor &encoder_num_blocks,
const paddle::Tensor &kv_batch_ids,
const paddle::Tensor &kv_tile_ids_per_batch,
const paddle::Tensor &kv_num_blocks,
const paddle::Tensor &decoder_batch_ids,
const paddle::Tensor &decoder_tile_ids_per_batch,
const paddle::Tensor &decoder_num_blocks,
const paddle::Tensor &set_max_lengths, const paddle::Tensor &max_len_kv,
paddle::Tensor &fmha_out,
const paddle::optional<paddle::Tensor> &rotary_embs,
const paddle::optional<paddle::Tensor> &attn_mask,
const paddle::optional<paddle::Tensor> &qkv_bias,
const paddle::optional<paddle::Tensor> &qkv_out_scales,
const paddle::optional<paddle::Tensor> &cache_k_quant_scales,
const paddle::optional<paddle::Tensor> &cache_v_quant_scales,
const paddle::optional<paddle::Tensor> &cache_k_dequant_scales,
const paddle::optional<paddle::Tensor> &cache_v_dequant_scales,
const paddle::optional<paddle::Tensor> &cache_k_zp,
const paddle::optional<paddle::Tensor> &cache_v_zp,
const paddle::optional<paddle::Tensor> &out_linear_shifts,
const paddle::optional<paddle::Tensor> &out_linear_smooths,
const paddle::optional<paddle::Tensor> &mask_offset,
const paddle::optional<paddle::Tensor> &kv_signal_data,
const paddle::optional<paddle::Tensor>& q_norm_weight,
const paddle::optional<paddle::Tensor>& k_norm_weight,
const float rms_norm_eps,
const std::string &compute_dtype, const std::string &cache_quant_type_str,
const bool use_neox_rotary_style, const bool rope_3d,
const int max_input_length, const float quant_max_bound,
const float quant_min_bound, const float out_linear_in_scale,
const int encoder_block_shape_q, const int decoder_block_shape_q,
const int max_partition_size, const int encoder_max_partition_size,
const int speculate_max_draft_token_num, const bool causal,
const bool speculate_decoder);
std::vector<paddle::Tensor> GQARopeWriteCacheKernel( std::vector<paddle::Tensor> GQARopeWriteCacheKernel(
const paddle::Tensor &qkv, const paddle::Tensor &key_cache, const paddle::Tensor &qkv, const paddle::Tensor &key_cache,
const paddle::Tensor &value_cache, const paddle::Tensor &cu_seqlens_q, const paddle::Tensor &value_cache, const paddle::Tensor &cu_seqlens_q,
@@ -881,6 +924,7 @@ PYBIND11_MODULE(fastdeploy_ops, m) {
* append_attention * append_attention
*/ */
m.def("append_attention", &AppendAttention, "append attention function"); m.def("append_attention", &AppendAttention, "append attention function");
m.def("append_attention_with_output", &AppendAttentionWithOutput, "append attention with output function");
/** /**
* gqa_rope_write_cache.cu * gqa_rope_write_cache.cu
* gqa_rope_write_cache * gqa_rope_write_cache

View File

@@ -24,6 +24,7 @@ import paddle
from fastdeploy.model_executor.layers.attention.ops import ( from fastdeploy.model_executor.layers.attention.ops import (
append_attention, append_attention,
append_attention_with_output,
get_block_shape_and_split_kv_block, get_block_shape_and_split_kv_block,
init_kv_signal_per_query, init_kv_signal_per_query,
init_signal_layerwise, init_signal_layerwise,
@@ -122,6 +123,7 @@ class AppendAttentionBackend(AttentionBackend):
fd_config.parallel_config.expert_parallel_rank = 0 fd_config.parallel_config.expert_parallel_rank = 0
self.rank, self.device_id = init_rank_and_device_id(fd_config) self.rank, self.device_id = init_rank_and_device_id(fd_config)
self.use_output = not fd_config.graph_opt_config.full_cuda_graph
def init_attention_metadata(self, forward_meta: ForwardMeta): def init_attention_metadata(self, forward_meta: ForwardMeta):
"""Initialize attntion metadata hence all layers in the forward pass can reuse it.""" """Initialize attntion metadata hence all layers in the forward pass can reuse it."""
@@ -229,58 +231,149 @@ class AppendAttentionBackend(AttentionBackend):
layer.layer_id + self.start_layer_index, layer.layer_id + self.start_layer_index,
) )
res = append_attention( if self.use_output:
qkv, quant_max_bound = getattr(layer, "quant_max_bound", 0.0)
forward_meta.caches[2 * layer.layer_id], cache_quant_type = getattr(layer, "cache_quant_type_str", "none")
forward_meta.caches[2 * layer.layer_id + 1], compute_type = metadata._fuse_kernel_compute_dtype
forward_meta.seq_lens_encoder, out_scale = getattr(layer, "out_scale", -1.0)
forward_meta.seq_lens_decoder, # 1. get output datatype
forward_meta.seq_lens_this_time, qkv_dtype = qkv.dtype
forward_meta.batch_id_per_token, if qkv_dtype == paddle.float16:
forward_meta.cu_seqlens_q, D_type = paddle.float16
metadata.block_tables, elif qkv_dtype == paddle.bfloat16:
metadata.encoder_batch_ids, D_type = paddle.bfloat16
metadata.encoder_tile_ids_per_batch, elif qkv_dtype == paddle.int32:
metadata.encoder_num_blocks, if compute_type == "bf16":
metadata.kv_batch_ids, D_type = paddle.bfloat16
metadata.kv_tile_ids_per_batch, elif compute_type == "fp16":
metadata.kv_num_blocks, D_type = paddle.float16
forward_meta.decoder_batch_ids, else:
forward_meta.decoder_tile_ids_per_batch, raise NotImplementedError("Only supported attr of qkv_type in ['float16', 'bfloat16'].")
forward_meta.decoder_num_blocks_cpu, else:
forward_meta.max_len_tensor_cpu, raise NotImplementedError("Only supported attr of qkv_type in ['float16', 'bfloat16', 'int32'].")
metadata.max_len_kv, # 2.Extract related parameters
metadata.rotary_embs, token_nums = qkv.shape[0]
metadata.attn_mask, head_dims = self.head_dim if cache_quant_type != "cache_int4_zp" else self.head_dim * 2
layer.qkv_bias, q_num_heads = self.num_heads
layer.qkv_scale, # 3. generate output tensor of different dtypes
getattr(layer, "cache_k_scale", None), if out_scale > 0.0:
getattr(layer, "cache_v_scale", None), if abs(quant_max_bound - 127) < 0.000001:
getattr(layer, "cache_k_out_scale", None), res = paddle.empty([token_nums, q_num_heads * head_dims], dtype="int8").to(qkv.place)
getattr(layer, "cache_v_out_scale", None), elif abs(quant_max_bound - 448) < 0.000001:
getattr(layer, "cache_k_zp", None), res = paddle.empty([token_nums, q_num_heads * head_dims], dtype="float8_e4m3fn").to(qkv.place)
getattr(layer, "cache_v_zp", None), else:
layer.linear_shift, raise NotImplementedError("Only supported attr of quant_max_bound in ['127', '448'].")
layer.linear_smooth, else:
metadata.mask_offset, res = paddle.empty([token_nums, q_num_heads * head_dims], dtype=D_type).to(qkv.place)
metadata.kv_signal_data_list[layer.layer_id],
getattr(layer, "q_norm_weight", None), append_attention_with_output(
getattr(layer, "k_norm_weight", None), qkv,
getattr(layer, "rms_norm_eps", 1e-6), forward_meta.caches[2 * layer.layer_id],
metadata._fuse_kernel_compute_dtype, forward_meta.caches[2 * layer.layer_id + 1],
getattr(layer, "cache_quant_type_str", "none"), forward_meta.seq_lens_encoder,
layer.use_neox_rotary_style, forward_meta.seq_lens_decoder,
self.rope_3d, forward_meta.seq_lens_this_time,
self.max_seq_len, forward_meta.batch_id_per_token,
getattr(layer, "quant_max_bound", 0.0), forward_meta.cu_seqlens_q,
getattr(layer, "quant_min_bound", 0.0), metadata.block_tables,
getattr(layer, "out_scale", -1.0), metadata.encoder_batch_ids,
self.encoder_block_shape_q, metadata.encoder_tile_ids_per_batch,
self.decoder_block_shape_q, metadata.encoder_num_blocks,
metadata.max_partition_size, metadata.kv_batch_ids,
metadata.encoder_max_partition_size, metadata.kv_tile_ids_per_batch,
self.speculate_max_draft_token_num + 1, metadata.kv_num_blocks,
self.causal, forward_meta.decoder_batch_ids,
self.speculative_method is not None, forward_meta.decoder_tile_ids_per_batch,
)[0] forward_meta.decoder_num_blocks_cpu,
forward_meta.max_len_tensor_cpu,
metadata.max_len_kv,
res,
metadata.rotary_embs,
metadata.attn_mask,
layer.qkv_bias,
layer.qkv_scale,
getattr(layer, "cache_k_scale", None),
getattr(layer, "cache_v_scale", None),
getattr(layer, "cache_k_out_scale", None),
getattr(layer, "cache_v_out_scale", None),
getattr(layer, "cache_k_zp", None),
getattr(layer, "cache_v_zp", None),
layer.linear_shift,
layer.linear_smooth,
metadata.mask_offset,
metadata.kv_signal_data_list[layer.layer_id],
getattr(layer, "q_norm_weight", None),
getattr(layer, "k_norm_weight", None),
getattr(layer, "rms_norm_eps", 1e-6),
metadata._fuse_kernel_compute_dtype,
getattr(layer, "cache_quant_type_str", "none"),
layer.use_neox_rotary_style,
self.rope_3d,
self.max_seq_len,
getattr(layer, "quant_max_bound", 0.0),
getattr(layer, "quant_min_bound", 0.0),
getattr(layer, "out_scale", -1.0),
self.encoder_block_shape_q,
self.decoder_block_shape_q,
metadata.max_partition_size,
metadata.encoder_max_partition_size,
self.speculate_max_draft_token_num + 1,
self.causal,
self.speculative_method is not None,
)
else:
res = append_attention(
qkv,
forward_meta.caches[2 * layer.layer_id],
forward_meta.caches[2 * layer.layer_id + 1],
forward_meta.seq_lens_encoder,
forward_meta.seq_lens_decoder,
forward_meta.seq_lens_this_time,
forward_meta.batch_id_per_token,
forward_meta.cu_seqlens_q,
metadata.block_tables,
metadata.encoder_batch_ids,
metadata.encoder_tile_ids_per_batch,
metadata.encoder_num_blocks,
metadata.kv_batch_ids,
metadata.kv_tile_ids_per_batch,
metadata.kv_num_blocks,
forward_meta.decoder_batch_ids,
forward_meta.decoder_tile_ids_per_batch,
forward_meta.decoder_num_blocks_cpu,
forward_meta.max_len_tensor_cpu,
metadata.max_len_kv,
metadata.rotary_embs,
metadata.attn_mask,
layer.qkv_bias,
layer.qkv_scale,
getattr(layer, "cache_k_scale", None),
getattr(layer, "cache_v_scale", None),
getattr(layer, "cache_k_out_scale", None),
getattr(layer, "cache_v_out_scale", None),
getattr(layer, "cache_k_zp", None),
getattr(layer, "cache_v_zp", None),
layer.linear_shift,
layer.linear_smooth,
metadata.mask_offset,
metadata.kv_signal_data_list[layer.layer_id],
getattr(layer, "q_norm_weight", None),
getattr(layer, "k_norm_weight", None),
getattr(layer, "rms_norm_eps", 1e-6),
metadata._fuse_kernel_compute_dtype,
getattr(layer, "cache_quant_type_str", "none"),
layer.use_neox_rotary_style,
self.rope_3d,
self.max_seq_len,
getattr(layer, "quant_max_bound", 0.0),
getattr(layer, "quant_min_bound", 0.0),
getattr(layer, "out_scale", -1.0),
self.encoder_block_shape_q,
self.decoder_block_shape_q,
metadata.max_partition_size,
metadata.encoder_max_partition_size,
self.speculate_max_draft_token_num + 1,
self.causal,
self.speculative_method is not None,
)
return res return res

View File

@@ -378,7 +378,7 @@ class FlashAttentionBackend(AttentionBackend):
self.speculate_max_draft_token_num + 1, self.speculate_max_draft_token_num + 1,
self.causal, self.causal,
self.speculative_method is not None, self.speculative_method is not None,
)[0] )
if metadata.max_len_tensor_cpu[1] > 0: if metadata.max_len_tensor_cpu[1] > 0:
merge_prefill_decode_output( merge_prefill_decode_output(

View File

@@ -14,7 +14,7 @@
# limitations under the License. # limitations under the License.
""" """
from .append_attention import append_attention from .append_attention import append_attention, append_attention_with_output
from .get_block_shape_and_split_kv_block import get_block_shape_and_split_kv_block from .get_block_shape_and_split_kv_block import get_block_shape_and_split_kv_block
from .gqa_rope_write_cache import gqa_rope_write_cache from .gqa_rope_write_cache import gqa_rope_write_cache
from .init_kv_signal_per_query import init_kv_signal_per_query from .init_kv_signal_per_query import init_kv_signal_per_query
@@ -25,6 +25,7 @@ from .pre_cache_len_concat import pre_cache_len_concat
__all__ = [ __all__ = [
"get_block_shape_and_split_kv_block", "get_block_shape_and_split_kv_block",
"append_attention", "append_attention",
"append_attention_with_output",
"open_shm_and_get_meta_signal", "open_shm_and_get_meta_signal",
"init_signal_layerwise", "init_signal_layerwise",
"gqa_rope_write_cache", "gqa_rope_write_cache",

View File

@@ -24,6 +24,9 @@ if current_platform.is_cuda():
from fastdeploy.model_executor.ops.gpu import ( from fastdeploy.model_executor.ops.gpu import (
append_attention as append_attention_gpu, append_attention as append_attention_gpu,
) )
from fastdeploy.model_executor.ops.gpu import (
append_attention_with_output as append_attention_with_output_gpu,
)
def append_attention( def append_attention(
@@ -141,3 +144,124 @@ def append_attention(
return out return out
else: else:
raise NotImplementedError raise NotImplementedError
# TODO: (mengyuan) merge w/o output version append attention after
# finishing developing sub-graph cudagraph capture to reduce
# compilation volume
def append_attention_with_output(
qkv: paddle.Tensor,
key_cache: paddle.Tensor,
value_cache: paddle.Tensor,
seq_lens_encoder: paddle.Tensor,
seq_lens_decoder: paddle.Tensor,
seq_lens_this_time: paddle.Tensor,
batch_id_per_token: paddle.Tensor,
cu_seqlens_q: paddle.Tensor,
block_tables: paddle.Tensor,
encoder_batch_ids: paddle.Tensor,
encoder_tile_ids_per_batch: paddle.Tensor,
encoder_num_blocks: paddle.Tensor,
kv_batch_ids: paddle.Tensor,
kv_tile_ids_per_batch: paddle.Tensor,
kv_num_blocks: paddle.Tensor,
decoder_batch_ids: paddle.Tensor,
decoder_tile_ids_per_batch: paddle.Tensor,
decoder_num_blocks: paddle.Tensor,
set_max_lengths: paddle.Tensor,
max_len_kv: paddle.Tensor,
out: paddle.tensor, # attention output
rotary_embs: Optional[paddle.Tensor] = None,
attn_mask: Optional[paddle.Tensor] = None,
qkv_bias: Optional[paddle.Tensor] = None,
qkv_scale: Optional[paddle.Tensor] = None,
k_quant_scale: Optional[paddle.Tensor] = None,
v_quant_scale: Optional[paddle.Tensor] = None,
k_dequant_scale: Optional[paddle.Tensor] = None,
v_dequant_scale: Optional[paddle.Tensor] = None,
cache_k_zp: Optional[paddle.Tensor] = None,
cache_v_zp: Optional[paddle.Tensor] = None,
linear_shift: Optional[paddle.Tensor] = None,
linear_smooth: Optional[paddle.Tensor] = None,
mask_offset: Optional[paddle.Tensor] = None,
kv_signal_data: Optional[paddle.Tensor] = None,
q_norm_weight: Optional[paddle.Tensor] = None,
k_norm_weight: Optional[paddle.Tensor] = None,
rms_norm_eps: float = 1e-6,
compute_type: str = "bf16",
cache_quant_type: str = "none",
use_neox_rotary_style: bool = False,
rope_3d: bool = False,
max_input_length: int = 0,
quant_max_bound: float = 0.0,
quant_min_bound: float = 0.0,
out_linear_in_scale: float = -1.0,
encoder_block_shape_q: int = 64,
decoder_block_shape_q: int = 16,
max_partition_size: int = 32768,
encoder_max_partition_size: int = 32768,
speculate_max_draft_token_num: int = 1,
causal: bool = True,
speculate_decoder: bool = False,
) -> None:
"""
append_attention
"""
if current_platform.is_cuda():
append_attention_with_output_gpu(
qkv,
key_cache,
value_cache,
seq_lens_encoder,
seq_lens_decoder,
seq_lens_this_time,
batch_id_per_token,
cu_seqlens_q,
block_tables,
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
decoder_batch_ids,
decoder_tile_ids_per_batch,
decoder_num_blocks,
set_max_lengths,
max_len_kv,
out,
rotary_embs,
attn_mask,
qkv_bias,
qkv_scale,
k_quant_scale,
v_quant_scale,
k_dequant_scale,
v_dequant_scale,
cache_k_zp,
cache_v_zp,
linear_shift,
linear_smooth,
mask_offset,
kv_signal_data,
q_norm_weight,
k_norm_weight,
rms_norm_eps,
compute_type,
cache_quant_type,
use_neox_rotary_style,
rope_3d,
max_input_length,
quant_max_bound,
quant_min_bound,
out_linear_in_scale,
encoder_block_shape_q,
decoder_block_shape_q,
max_partition_size,
encoder_max_partition_size,
speculate_max_draft_token_num,
causal,
speculate_decoder,
)
else:
raise NotImplementedError

View File

@@ -532,7 +532,7 @@ class TestAppendGroupQueryAttnWithRope(unittest.TestCase):
speculate_max_draft_token_num + 1, # speculate_max_draft_token_num speculate_max_draft_token_num + 1, # speculate_max_draft_token_num
True, # causal True, # causal
False, # speculate_decoder False, # speculate_decoder
)[0] )
paddle.device.synchronize() paddle.device.synchronize()
end_time = time.time() end_time = time.time()
print(f"[append-attn ut] cost_time:{(end_time - start_time) / RUN_TIME * 1000}ms") print(f"[append-attn ut] cost_time:{(end_time - start_time) / RUN_TIME * 1000}ms")

View File

@@ -0,0 +1,639 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
import numpy as np
import paddle
from paddle.incubate.nn.functional import fused_rms_norm
paddle.seed(10)
class RopeEmbedding:
def __init__(self, use_neox_rotary_style=False):
self.use_neox_rotary_style = use_neox_rotary_style
self.base = 10000
def get_neox_style_position_embedding(self, position_ids, head_dim):
bsz, max_seq_len = position_ids.shape[:2]
rot_emb = paddle.zeros((2, bsz, max_seq_len, 1, head_dim), dtype="float32")
inv_freq = self.base ** (-paddle.arange(0, head_dim, 2, dtype="float32") / head_dim)
# shape: [B, S, D/2]
freqs = paddle.einsum("ij,k->ijk", position_ids.cast("float32"), inv_freq)
# shape: [B, S, 1, D]
emb = paddle.concat([freqs, freqs], axis=-1).reshape((bsz, max_seq_len, 1, head_dim))
rot_emb[0] = paddle.cos(emb)
rot_emb[1] = paddle.sin(emb)
return rot_emb
def get_rotary_position_embedding(self, position_ids, head_dim):
bsz, max_seq_len = position_ids.shape[:2]
rot_emb = paddle.zeros((2, bsz, max_seq_len, 1, head_dim // 2), dtype="float32")
inv_freq = self.base ** (-paddle.arange(0, head_dim, 2, dtype="float32") / head_dim)
# shape: [B, S, D/2]
freqs = paddle.einsum("ij,k->ijk", position_ids.cast("float32"), inv_freq)
# shape: [B, S, D/2]
emb = paddle.stack([freqs], axis=-1).reshape((bsz, max_seq_len, head_dim // 2))
# shape: [B, S, 1, D]
emb = paddle.unsqueeze(emb, 2)
rot_emb[0] = paddle.cos(emb)
rot_emb[1] = paddle.sin(emb)
return rot_emb
def _apply_rope(self, rotary_emb, q, k, v=None, causal=False):
# sin [sequence_length, embed_size_per_head//2]
# cos [sequence_length, embed_size_per_head//2]
# sin, cos = paddle.chunk(rp, 2, axis=-1)
seq, head_dim = q.shape[2], q.shape[3]
cos, sin = paddle.chunk(rotary_emb, 2, axis=0)
cos = paddle.squeeze(cos, axis=0).transpose([0, 2, 1, 3])[:, :, :seq, :]
sin = paddle.squeeze(sin, axis=0).transpose([0, 2, 1, 3])[:, :, :seq, :]
# sin [θ0,θ1,θ2......θd/2-1] -> sin_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
if self.use_neox_rotary_style:
sin_pos = sin
cos_pos = cos
# NeoX Stype前后半部分分块旋转
rotate_half_q = paddle.reshape(
paddle.stack(
[
-q[:, :, :, q.shape[-1] // 2 :],
q[:, :, :, : q.shape[-1] // 2],
],
axis=-1,
),
paddle.shape(q),
)
rotate_half_k = paddle.reshape(
paddle.stack(
[
-k[:, :, :, k.shape[-1] // 2 :],
k[:, :, :, : k.shape[-1] // 2],
],
axis=-1,
),
paddle.shape(k),
)
else:
# import pdb;pdb.set_trace()
sin_pos = paddle.reshape(paddle.stack([sin, sin], axis=-1), [1, 1, seq, head_dim])
# cos [θ0,θ1,θ2......θd/2-1] -> cos_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
cos_pos = paddle.reshape(paddle.stack([cos, cos], axis=-1), [1, 1, seq, head_dim])
# GPT Stype奇偶位置分块旋转
rotate_half_q = paddle.reshape(
paddle.stack([-q[:, :, :, 1::2], q[:, :, :, 0::2]], axis=-1),
paddle.shape(q),
)
rotate_half_k = paddle.reshape(
paddle.stack([-k[:, :, :, 1::2], k[:, :, :, 0::2]], axis=-1),
paddle.shape(k),
)
query = paddle.add(paddle.multiply(q, cos_pos), paddle.multiply(rotate_half_q, sin_pos))
key = paddle.add(paddle.multiply(k, cos_pos), paddle.multiply(rotate_half_k, sin_pos))
return paddle.cast(query, q.dtype), paddle.cast(key, k.dtype)
def create_attn_mask(
mask_type,
batch_size,
seq_lens,
pre_cache_length=0,
):
max_seq_len = max(seq_lens)
mask = paddle.zeros(
# [batch_size, 1, max_seq_len, max_seq_len + pre_cache_length],
[batch_size, 1, max_seq_len, max_seq_len],
dtype=mask_type,
)
mask[:, :, :, :pre_cache_length] = 1
for i in range(batch_size):
seq_len = seq_lens[i]
mask[i, 0, :seq_len, :seq_len] = (
paddle.tril(paddle.ones(shape=(seq_len, seq_len), dtype=mask_type)) - 1
) * 1e4
return mask
def block_cache_to_naive_cache(cache_k, cache_v, bsz, block_tables, cache_seq_len):
_, num_head, blocksize, dim_head = cache_k.shape
out_cache_k = paddle.zeros(shape=[bsz, num_head, cache_seq_len, dim_head], dtype=cache_k.dtype)
out_cache_v = paddle.zeros(shape=[bsz, num_head, cache_seq_len, dim_head], dtype=cache_v.dtype)
for i in range(bsz):
for j in range(cache_seq_len):
out_cache_k[i, :, j, :] = cache_k[block_tables[i, j // blocksize], :, j % blocksize, :]
out_cache_v[i, :, j, :] = cache_v[block_tables[i, j // blocksize], :, j % blocksize, :]
return out_cache_k, out_cache_v
def naive_attention_impl(
query,
key,
value,
cache_k=None,
cache_v=None,
pre_cache_k=None,
pre_cache_v=None,
mask=None,
scale=1.0,
cache_k_dequant_scales=None,
cache_v_dequant_scales=None,
use_cachekv_int8="None",
q_norm_weight=None,
k_norm_weight=None,
):
batch = query.shape[0]
heads = query.shape[1]
seq_len = query.shape[2]
head_dim = query.shape[3]
kv_head = key.shape[1]
key = key.reshape([batch, kv_head, 1, seq_len, head_dim])
key = paddle.tile(key, [1, 1, heads // kv_head, 1, 1])
key = key.reshape([batch, heads, seq_len, head_dim])
if cache_k is not None:
cache_k = cache_k.reshape([batch, kv_head, 1, -1, head_dim])
cache_k = paddle.tile(cache_k, [1, 1, heads // kv_head, 1, 1])
cache_k = cache_k.reshape([batch, heads, -1, head_dim])
key = paddle.concat([cache_k, key], axis=2)
value = value.reshape([batch, kv_head, 1, seq_len, head_dim])
value = paddle.tile(value, [1, 1, heads // kv_head, 1, 1])
value = value.reshape([batch, heads, seq_len, head_dim])
if cache_v is not None:
cache_v = cache_v.reshape([batch, kv_head, 1, -1, head_dim])
cache_v = paddle.tile(cache_v, [1, 1, heads // kv_head, 1, 1])
cache_v = cache_v.reshape([batch, heads, -1, head_dim])
value = paddle.concat([cache_v, value], axis=2)
qk_res = paddle.matmul(query, key, transpose_y=True)
attention = qk_res * scale
if mask is not None:
attention = attention + mask
softmax_result = paddle.nn.functional.softmax(attention, -1)
result = paddle.matmul(paddle.cast(softmax_result, dtype=value.dtype), value)
return result
def get_padding_offset(bsz, max_seq_len, seq_lens_this_time):
cum_offsets_now = paddle.cumsum(max_seq_len - seq_lens_this_time)
cum_offsets = paddle.zeros(shape=(bsz + 1), dtype="int32")
cum_offsets[1:] = cum_offsets_now
token_num = paddle.sum(seq_lens_this_time)
padding_offsets = paddle.zeros(shape=(token_num), dtype="int32")
cu_seqlens_q = paddle.zeros(shape=(bsz + 1), dtype="int32")
cu_seqlens_k = paddle.zeros(shape=(bsz + 1), dtype="int32")
for i in range(bsz):
seq_len_now = seq_lens_this_time[i]
cum_offset = cum_offsets[i]
for j in range(seq_len_now):
padding_offsets[i * max_seq_len - cum_offset + j] = cum_offset
cum_seq_len = (i + 1) * max_seq_len - cum_offsets[i + 1]
cu_seqlens_q[i + 1] = cum_seq_len
cu_seqlens_k[i + 1] = cum_seq_len
return padding_offsets, cum_offsets[:-1], cu_seqlens_q, cu_seqlens_k
def remove_padding(seq_lens, cu_seq_lens, inputs, token_num):
bsz, num_head, seq_len, dim_head = inputs.shape
output = paddle.zeros(shape=[token_num, num_head * dim_head], dtype=inputs.dtype)
inputs = inputs.transpose([0, 2, 1, 3]).reshape([bsz, seq_len, -1])
for i in range(bsz):
seq_len_now = seq_lens[i]
start_idx = cu_seq_lens[i]
end_idx = cu_seq_lens[i + 1]
output[start_idx:end_idx, :] = inputs[i, :seq_len_now, :]
return output
def get_qkv_and_qkv_concat_tensor(bs, q_num_head, kv_num_head, seq_len, dim_head, place, dtype):
query = np.random.random([bs, q_num_head, seq_len, dim_head]) / 10
q = paddle.to_tensor(query, place=place, dtype=dtype, stop_gradient=False)
key = np.random.random([bs, kv_num_head, seq_len, dim_head]) / 10
k = paddle.to_tensor(key, place=place, dtype=dtype, stop_gradient=False)
value = np.random.random([bs, kv_num_head, seq_len, dim_head]) / 10
v = paddle.to_tensor(value, place=place, dtype=dtype, stop_gradient=False)
token_num = bs * seq_len
qkv = paddle.concat(
[
q.transpose([0, 2, 1, 3]).reshape([token_num, q_num_head * dim_head]),
k.transpose([0, 2, 1, 3]).reshape([token_num, kv_num_head * dim_head]),
v.transpose([0, 2, 1, 3]).reshape([token_num, kv_num_head * dim_head]),
],
axis=1,
).reshape([token_num, -1])
return q, k, v, qkv
def apply_qk_norm(head_dim, dtype, q, k):
q_norm_weight = np.random.random([head_dim]) / 10
k_norm_weight = np.random.random([head_dim]) / 10
q_norm_weight_tensor = paddle.to_tensor(q_norm_weight, dtype=dtype)
k_norm_weight_tensor = paddle.to_tensor(k_norm_weight, dtype=dtype)
print("q:", q.shape)
print("k:", k.shape)
bs, q_num_head, seq_len, dim_head = q.shape
_, kv_num_head, _, _ = k.shape
q = q.reshape([-1, head_dim])
k = k.reshape([-1, head_dim])
print("q:", q)
q = fused_rms_norm(q, q_norm_weight_tensor, None, 1e-5)[0]
print("q after norm:", q)
k = fused_rms_norm(k, k_norm_weight_tensor, None, 1e-5)[0]
q = q.reshape([-1, q_num_head, seq_len, dim_head])
k = k.reshape([-1, kv_num_head, seq_len, dim_head])
return q, k, q_norm_weight_tensor, k_norm_weight_tensor
def split_query_by_phase(
query,
seq_lens_encoder,
seq_lens_decoder,
seq_lens_this_time,
q_dim,
k_dim,
v_dim,
):
"""
将 query 拆分为 encoder 和 decoder 的 Q/K/V。
"""
batch = seq_lens_encoder.shape[0]
max_seq = query.shape[0] // batch
# 还原 query 为 [batch, seq, dim]
total_dim = q_dim + k_dim + v_dim
query = paddle.reshape(query, [batch, max_seq, total_dim])
# 计算 mask表示该 batch 是否是 encoder/decoder
is_encoder = (seq_lens_encoder > 0).astype("bool").reshape([-1]) # [batch]
is_decoder = (seq_lens_decoder > 0).astype("bool").reshape([-1]) # [batch]
# 准备输出列表
enc_qs, enc_ks, enc_vs = [], [], []
dec_qs, dec_ks, dec_vs = [], [], []
for i in range(batch):
real_len = int(seq_lens_this_time[i]) # 当前 batch 的有效长度
cur_query = query[i, :real_len, :] # [seq_i, q+k+v]
q, k, v = paddle.split(cur_query, [q_dim, k_dim, v_dim], axis=-1)
if is_encoder[i]:
enc_qs.append(q)
enc_ks.append(k)
enc_vs.append(v)
elif is_decoder[i]:
dec_qs.append(q)
dec_ks.append(k)
dec_vs.append(v)
if enc_qs:
enc_q = paddle.concat(enc_qs, axis=0)
enc_k = paddle.concat(enc_ks, axis=0)
enc_v = paddle.concat(enc_vs, axis=0)
else:
enc_q = enc_k = enc_v = paddle.zeros([0, q_dim], dtype=query.dtype)
if dec_qs:
dec_q = paddle.concat(dec_qs, axis=0)
dec_k = paddle.concat(dec_ks, axis=0)
dec_v = paddle.concat(dec_vs, axis=0)
else:
dec_q = dec_k = dec_v = paddle.zeros([0, q_dim], dtype=query.dtype)
return (enc_q, enc_k, enc_v), (dec_q, dec_k, dec_v)
class TestAppendGroupQueryAttnWithRope(unittest.TestCase):
def setUp(self):
paddle.disable_static()
self.name = "TestAppendGroupQueryAttnWithRope"
self.place = paddle.CUDAPlace(0)
self.batch_size = 1
self.q_num_head = 12
self.kv_num_head = 2
self.seq_len = 64
self.max_dec_len = 64
self.dim_head = 128
self.q_hid_dim = self.q_num_head * self.dim_head
self.kv_hid_dim = self.kv_num_head * self.dim_head
self.blocksize = 64
self.use_neox_rotary_style = False
# max_seq_len = self.seq_len + self.max_dec_len
self.max_seq_len = self.seq_len + self.max_dec_len
self.softmax_scale = self.dim_head**-0.5
self.rope_theta = 10000
self.dtype = "float16"
self.use_qk_norm = True
self.use_mask_offset = False
self.init_tensor()
def init_tensor(self):
self.block_num_per_seq = (self.seq_len + self.max_dec_len + self.blocksize - 1) // self.blocksize
self.rope = RopeEmbedding(self.use_neox_rotary_style)
self.max_block_num = self.block_num_per_seq * self.batch_size
self.free_list = list(range(self.max_block_num - 1, -1, -1))
self.seq_lens_enc = [
self.seq_len,
] * self.batch_size
self.seq_lens_dec = [
0,
] * self.batch_size
self.max_enc_len_this_time = max(self.seq_lens_enc)
self.max_dec_len_this_time = max(self.seq_lens_dec)
self.seq_lens_encoder = paddle.to_tensor(
self.seq_lens_enc,
"int32",
)
self.seq_lens_decoder = paddle.to_tensor(
self.seq_lens_dec,
"int32",
)
self.max_enc_len_this_time = paddle.to_tensor([self.max_enc_len_this_time], "int32", place=paddle.CPUPlace())
self.max_dec_len_this_time = paddle.to_tensor([self.max_dec_len_this_time], "int32", place=paddle.CPUPlace())
self.seq_lens_this_time = self.seq_lens_encoder
self.decoder_batch_ids = paddle.full([self.batch_size], 0, dtype="int32")
self.decoder_tile_ids_per_batch = paddle.full([self.batch_size], 0, dtype="int32")
self.decoder_num_blocks_cpu = paddle.full([1], 0, dtype="int32").pin_memory()
self.max_len_tensor_cpu = paddle.full([8], 0, dtype="int32").cpu()
self.cache_shape = (
self.max_block_num,
self.kv_num_head,
self.blocksize,
self.dim_head,
)
self.scale = 1.0 / np.sqrt(self.dim_head)
self.cache_k = paddle.zeros(shape=self.cache_shape, dtype=self.dtype)
self.cache_v = paddle.zeros(shape=self.cache_shape, dtype=self.dtype)
self.block_tables = paddle.zeros(shape=(self.batch_size, self.block_num_per_seq), dtype="int32")
for i in range(self.batch_size):
need_block_num = (self.seq_len + self.max_dec_len + self.blocksize - 1) // self.blocksize
for j in range(need_block_num):
self.block_tables[i, j] = self.free_list.pop()
(
self.padding_offset,
self.cum_offset,
self.cu_seqlens_q,
self.cu_seqlens_k,
) = get_padding_offset(self.batch_size, self.seq_len, self.seq_lens_this_time)
self.token_num = self.padding_offset.shape[0]
self.mask_offset = None
if self.use_mask_offset:
self.mask_offset = paddle.full(self.seq_len * self.batch_size, 0, "int32")
for i in range(self.batch_size):
for j in range(self.seq_len):
self.mask_offset[i * self.seq_len + j] = j
def cmp_append_attention(self, naive_cache_k=None, naive_cache_v=None, attn_mask=None):
paddle.disable_static()
self.token_num = self.seq_len * self.batch_size
q, k, v, qkv = get_qkv_and_qkv_concat_tensor(
self.batch_size,
self.q_num_head,
self.kv_num_head,
self.seq_len,
self.dim_head,
self.place,
self.dtype,
)
q, k = self.rope._apply_rope(self.rope_emb, q, k, causal=True)
if self.use_qk_norm:
q, k, q_norm_weight, k_norm_weight = apply_qk_norm(self.dim_head, self.dtype, q, k)
else:
q_norm_weight = None
k_norm_weight = None
out_ = naive_attention_impl(
q,
k,
v,
naive_cache_k,
naive_cache_v,
None,
None,
attn_mask,
self.scale,
)
out_ = remove_padding(self.seq_lens_this_time, self.cu_seqlens_q, out_, self.token_num)
speculate_max_draft_token_num = 1
from fastdeploy.model_executor.layers.attention.ops import (
append_attention_with_output,
get_block_shape_and_split_kv_block,
)
(
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
max_len_kv,
) = get_block_shape_and_split_kv_block(
self.seq_lens_encoder,
self.seq_lens_decoder,
self.seq_lens_this_time,
self.decoder_batch_ids,
self.decoder_tile_ids_per_batch,
self.decoder_num_blocks_cpu,
self.max_len_tensor_cpu,
64,
12,
(self.q_num_head + 2 * self.kv_num_head) // self.kv_num_head,
self.blocksize,
speculate_max_draft_token_num + 1,
)
# Warm up
WARM_UP = 1
RUN_TIME = 2
out = paddle.zeros((qkv.shape[0], self.q_hid_dim), dtype=q.dtype).to(q.place)
for i in range(WARM_UP + RUN_TIME):
if i == WARM_UP:
paddle.device.synchronize()
start_time = time.time()
append_attention_with_output(
qkv,
self.cache_k,
self.cache_v,
self.seq_lens_encoder,
self.seq_lens_decoder,
self.seq_lens_this_time,
self.padding_offset,
self.cum_offset,
self.block_tables,
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
self.decoder_batch_ids,
self.decoder_tile_ids_per_batch,
self.decoder_num_blocks_cpu,
self.max_len_tensor_cpu,
max_len_kv,
out,
self.rope_emb, # rope_emb
None, # attn_mask
None, # qkv_bias
None, # qkv_out_scales
None, # cache_k_quant_scales
None, # cache_v_quant_scales
None, # cache_k_dequant_scales
None, # cache_v_dequant_scales
None, # cache_k_zp
None, # cache_v_zp
None, # linear_shift
None, # linear_smooth
self.mask_offset, # mask_offset
None, # kv_signal_data
q_norm_weight, # q_norm_weight
k_norm_weight, # k_norm_weight
1e-6,
"fp16",
"none", # cache_quant_type
self.use_neox_rotary_style,
False,
self.max_seq_len,
0.0, # quant_min_bound
0.0, # quant_max_bound
-1, # out_linear_in_scale
64, # encoder_block_shape_q
16, # decoder_block_shape_q
32768, # max_partition_size
32768, # encoder_max_partition_size
speculate_max_draft_token_num + 1, # speculate_max_draft_token_num
True, # causal
False, # speculate_decoder
)
paddle.device.synchronize()
end_time = time.time()
print(f"[append-attn ut] cost_time:{(end_time - start_time) / RUN_TIME * 1000}ms")
naive_cache_k, naive_cache_v = block_cache_to_naive_cache(
self.cache_k,
self.cache_v,
self.batch_size,
self.block_tables,
self.seq_len,
)
np.testing.assert_allclose(
out.numpy(),
out_.numpy(),
rtol=1e-02,
atol=1e-02,
)
def test_all(self):
tmp_position_ids = paddle.arange(self.seq_len + self.max_dec_len).reshape((1, -1))
# appendattn 传的是最大maxseq
if self.use_neox_rotary_style:
self.rope_emb = self.rope.get_neox_style_position_embedding(tmp_position_ids, self.dim_head)
else:
self.rope_emb = self.rope.get_rotary_position_embedding(tmp_position_ids, self.dim_head)
self.attention_mask = create_attn_mask(
self.dtype,
self.batch_size,
[
self.seq_len,
]
* self.batch_size,
)
# encoder
# self.seq_lens_encoder,self.seq_lens_decoder,self.max_enc_len_this_time,self.max_dec_len_this_time=get_encoder_decoder_len(self.batch_size,self.seq_len)
self.seq_lens_this_time = self.seq_lens_encoder
if self.use_mask_offset:
print("encoder mask_offset: ", self.mask_offset)
self.cmp_append_attention(attn_mask=self.attention_mask)
naive_cache_k, naive_cache_v = block_cache_to_naive_cache(
self.cache_k,
self.cache_v,
self.batch_size,
self.block_tables,
self.seq_len,
)
# decoder
self.seq_lens_decoder[:] = self.seq_lens_encoder
self.seq_lens_encoder[:] = 0
self.seq_lens_this_time[:] = 1
self.seq_lens_enc = [
0,
] * self.batch_size
self.seq_lens_dec = [
self.seq_len,
] * self.batch_size
self.max_enc_len_this_time = max(self.seq_lens_enc)
self.max_dec_len_this_time = max(self.seq_lens_dec)
self.max_enc_len_this_time = paddle.to_tensor([self.max_enc_len_this_time], "int32", place=paddle.CPUPlace())
self.max_dec_len_this_time = paddle.to_tensor([self.max_dec_len_this_time], "int32", place=paddle.CPUPlace())
self.seq_len = 1
(
self.padding_offset,
self.cum_offset,
self.cu_seqlens_q,
self.cu_seqlens_k,
) = get_padding_offset(self.batch_size, 1, self.seq_lens_this_time)
if self.use_mask_offset:
self.mask_offset = paddle.full(self.batch_size, 0, "int32")
for i in range(self.batch_size):
self.mask_offset[i] = self.seq_lens_dec[i]
print("decoder mask_offset: ", self.mask_offset)
self.cmp_append_attention(naive_cache_k, naive_cache_v, None)
class TestAppendGroupQueryAttnWithNeoXRope(TestAppendGroupQueryAttnWithRope):
def setUp(self):
paddle.disable_static()
self.name = "TestAppendGroupQueryAttnWithRope"
self.place = paddle.CUDAPlace(0)
self.batch_size = 1
self.q_num_head = 12
self.kv_num_head = 2
self.seq_len = 64
self.max_dec_len = 64
self.dim_head = 128
self.q_hid_dim = self.q_num_head * self.dim_head
self.kv_hid_dim = self.kv_num_head * self.dim_head
self.blocksize = 64
self.use_neox_rotary_style = True
# max_seq_len = self.seq_len + self.max_dec_len
self.max_seq_len = self.seq_len + self.max_dec_len
self.softmax_scale = self.dim_head**-0.5
self.rope_theta = 10000
self.dtype = "float16"
self.use_qk_norm = False
self.use_mask_offset = True
self.init_tensor()
if __name__ == "__main__":
unittest.main()