Add with_output version AppendAttention (#3302)

* get use_output from fd_config

* add clear TODO description

* add mask_offset para to align with develop

* fix bug

* fix use_output logic

* fix sot bug
This commit is contained in:
Liumengyuan
2025-08-28 17:10:18 +08:00
committed by GitHub
parent 94ded434bd
commit e93d4cfcdd
8 changed files with 1366 additions and 96 deletions

View File

@@ -0,0 +1,639 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
import numpy as np
import paddle
from paddle.incubate.nn.functional import fused_rms_norm
paddle.seed(10)
class RopeEmbedding:
def __init__(self, use_neox_rotary_style=False):
self.use_neox_rotary_style = use_neox_rotary_style
self.base = 10000
def get_neox_style_position_embedding(self, position_ids, head_dim):
bsz, max_seq_len = position_ids.shape[:2]
rot_emb = paddle.zeros((2, bsz, max_seq_len, 1, head_dim), dtype="float32")
inv_freq = self.base ** (-paddle.arange(0, head_dim, 2, dtype="float32") / head_dim)
# shape: [B, S, D/2]
freqs = paddle.einsum("ij,k->ijk", position_ids.cast("float32"), inv_freq)
# shape: [B, S, 1, D]
emb = paddle.concat([freqs, freqs], axis=-1).reshape((bsz, max_seq_len, 1, head_dim))
rot_emb[0] = paddle.cos(emb)
rot_emb[1] = paddle.sin(emb)
return rot_emb
def get_rotary_position_embedding(self, position_ids, head_dim):
bsz, max_seq_len = position_ids.shape[:2]
rot_emb = paddle.zeros((2, bsz, max_seq_len, 1, head_dim // 2), dtype="float32")
inv_freq = self.base ** (-paddle.arange(0, head_dim, 2, dtype="float32") / head_dim)
# shape: [B, S, D/2]
freqs = paddle.einsum("ij,k->ijk", position_ids.cast("float32"), inv_freq)
# shape: [B, S, D/2]
emb = paddle.stack([freqs], axis=-1).reshape((bsz, max_seq_len, head_dim // 2))
# shape: [B, S, 1, D]
emb = paddle.unsqueeze(emb, 2)
rot_emb[0] = paddle.cos(emb)
rot_emb[1] = paddle.sin(emb)
return rot_emb
def _apply_rope(self, rotary_emb, q, k, v=None, causal=False):
# sin [sequence_length, embed_size_per_head//2]
# cos [sequence_length, embed_size_per_head//2]
# sin, cos = paddle.chunk(rp, 2, axis=-1)
seq, head_dim = q.shape[2], q.shape[3]
cos, sin = paddle.chunk(rotary_emb, 2, axis=0)
cos = paddle.squeeze(cos, axis=0).transpose([0, 2, 1, 3])[:, :, :seq, :]
sin = paddle.squeeze(sin, axis=0).transpose([0, 2, 1, 3])[:, :, :seq, :]
# sin [θ0,θ1,θ2......θd/2-1] -> sin_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
if self.use_neox_rotary_style:
sin_pos = sin
cos_pos = cos
# NeoX Stype前后半部分分块旋转
rotate_half_q = paddle.reshape(
paddle.stack(
[
-q[:, :, :, q.shape[-1] // 2 :],
q[:, :, :, : q.shape[-1] // 2],
],
axis=-1,
),
paddle.shape(q),
)
rotate_half_k = paddle.reshape(
paddle.stack(
[
-k[:, :, :, k.shape[-1] // 2 :],
k[:, :, :, : k.shape[-1] // 2],
],
axis=-1,
),
paddle.shape(k),
)
else:
# import pdb;pdb.set_trace()
sin_pos = paddle.reshape(paddle.stack([sin, sin], axis=-1), [1, 1, seq, head_dim])
# cos [θ0,θ1,θ2......θd/2-1] -> cos_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
cos_pos = paddle.reshape(paddle.stack([cos, cos], axis=-1), [1, 1, seq, head_dim])
# GPT Stype奇偶位置分块旋转
rotate_half_q = paddle.reshape(
paddle.stack([-q[:, :, :, 1::2], q[:, :, :, 0::2]], axis=-1),
paddle.shape(q),
)
rotate_half_k = paddle.reshape(
paddle.stack([-k[:, :, :, 1::2], k[:, :, :, 0::2]], axis=-1),
paddle.shape(k),
)
query = paddle.add(paddle.multiply(q, cos_pos), paddle.multiply(rotate_half_q, sin_pos))
key = paddle.add(paddle.multiply(k, cos_pos), paddle.multiply(rotate_half_k, sin_pos))
return paddle.cast(query, q.dtype), paddle.cast(key, k.dtype)
def create_attn_mask(
mask_type,
batch_size,
seq_lens,
pre_cache_length=0,
):
max_seq_len = max(seq_lens)
mask = paddle.zeros(
# [batch_size, 1, max_seq_len, max_seq_len + pre_cache_length],
[batch_size, 1, max_seq_len, max_seq_len],
dtype=mask_type,
)
mask[:, :, :, :pre_cache_length] = 1
for i in range(batch_size):
seq_len = seq_lens[i]
mask[i, 0, :seq_len, :seq_len] = (
paddle.tril(paddle.ones(shape=(seq_len, seq_len), dtype=mask_type)) - 1
) * 1e4
return mask
def block_cache_to_naive_cache(cache_k, cache_v, bsz, block_tables, cache_seq_len):
_, num_head, blocksize, dim_head = cache_k.shape
out_cache_k = paddle.zeros(shape=[bsz, num_head, cache_seq_len, dim_head], dtype=cache_k.dtype)
out_cache_v = paddle.zeros(shape=[bsz, num_head, cache_seq_len, dim_head], dtype=cache_v.dtype)
for i in range(bsz):
for j in range(cache_seq_len):
out_cache_k[i, :, j, :] = cache_k[block_tables[i, j // blocksize], :, j % blocksize, :]
out_cache_v[i, :, j, :] = cache_v[block_tables[i, j // blocksize], :, j % blocksize, :]
return out_cache_k, out_cache_v
def naive_attention_impl(
query,
key,
value,
cache_k=None,
cache_v=None,
pre_cache_k=None,
pre_cache_v=None,
mask=None,
scale=1.0,
cache_k_dequant_scales=None,
cache_v_dequant_scales=None,
use_cachekv_int8="None",
q_norm_weight=None,
k_norm_weight=None,
):
batch = query.shape[0]
heads = query.shape[1]
seq_len = query.shape[2]
head_dim = query.shape[3]
kv_head = key.shape[1]
key = key.reshape([batch, kv_head, 1, seq_len, head_dim])
key = paddle.tile(key, [1, 1, heads // kv_head, 1, 1])
key = key.reshape([batch, heads, seq_len, head_dim])
if cache_k is not None:
cache_k = cache_k.reshape([batch, kv_head, 1, -1, head_dim])
cache_k = paddle.tile(cache_k, [1, 1, heads // kv_head, 1, 1])
cache_k = cache_k.reshape([batch, heads, -1, head_dim])
key = paddle.concat([cache_k, key], axis=2)
value = value.reshape([batch, kv_head, 1, seq_len, head_dim])
value = paddle.tile(value, [1, 1, heads // kv_head, 1, 1])
value = value.reshape([batch, heads, seq_len, head_dim])
if cache_v is not None:
cache_v = cache_v.reshape([batch, kv_head, 1, -1, head_dim])
cache_v = paddle.tile(cache_v, [1, 1, heads // kv_head, 1, 1])
cache_v = cache_v.reshape([batch, heads, -1, head_dim])
value = paddle.concat([cache_v, value], axis=2)
qk_res = paddle.matmul(query, key, transpose_y=True)
attention = qk_res * scale
if mask is not None:
attention = attention + mask
softmax_result = paddle.nn.functional.softmax(attention, -1)
result = paddle.matmul(paddle.cast(softmax_result, dtype=value.dtype), value)
return result
def get_padding_offset(bsz, max_seq_len, seq_lens_this_time):
cum_offsets_now = paddle.cumsum(max_seq_len - seq_lens_this_time)
cum_offsets = paddle.zeros(shape=(bsz + 1), dtype="int32")
cum_offsets[1:] = cum_offsets_now
token_num = paddle.sum(seq_lens_this_time)
padding_offsets = paddle.zeros(shape=(token_num), dtype="int32")
cu_seqlens_q = paddle.zeros(shape=(bsz + 1), dtype="int32")
cu_seqlens_k = paddle.zeros(shape=(bsz + 1), dtype="int32")
for i in range(bsz):
seq_len_now = seq_lens_this_time[i]
cum_offset = cum_offsets[i]
for j in range(seq_len_now):
padding_offsets[i * max_seq_len - cum_offset + j] = cum_offset
cum_seq_len = (i + 1) * max_seq_len - cum_offsets[i + 1]
cu_seqlens_q[i + 1] = cum_seq_len
cu_seqlens_k[i + 1] = cum_seq_len
return padding_offsets, cum_offsets[:-1], cu_seqlens_q, cu_seqlens_k
def remove_padding(seq_lens, cu_seq_lens, inputs, token_num):
bsz, num_head, seq_len, dim_head = inputs.shape
output = paddle.zeros(shape=[token_num, num_head * dim_head], dtype=inputs.dtype)
inputs = inputs.transpose([0, 2, 1, 3]).reshape([bsz, seq_len, -1])
for i in range(bsz):
seq_len_now = seq_lens[i]
start_idx = cu_seq_lens[i]
end_idx = cu_seq_lens[i + 1]
output[start_idx:end_idx, :] = inputs[i, :seq_len_now, :]
return output
def get_qkv_and_qkv_concat_tensor(bs, q_num_head, kv_num_head, seq_len, dim_head, place, dtype):
query = np.random.random([bs, q_num_head, seq_len, dim_head]) / 10
q = paddle.to_tensor(query, place=place, dtype=dtype, stop_gradient=False)
key = np.random.random([bs, kv_num_head, seq_len, dim_head]) / 10
k = paddle.to_tensor(key, place=place, dtype=dtype, stop_gradient=False)
value = np.random.random([bs, kv_num_head, seq_len, dim_head]) / 10
v = paddle.to_tensor(value, place=place, dtype=dtype, stop_gradient=False)
token_num = bs * seq_len
qkv = paddle.concat(
[
q.transpose([0, 2, 1, 3]).reshape([token_num, q_num_head * dim_head]),
k.transpose([0, 2, 1, 3]).reshape([token_num, kv_num_head * dim_head]),
v.transpose([0, 2, 1, 3]).reshape([token_num, kv_num_head * dim_head]),
],
axis=1,
).reshape([token_num, -1])
return q, k, v, qkv
def apply_qk_norm(head_dim, dtype, q, k):
q_norm_weight = np.random.random([head_dim]) / 10
k_norm_weight = np.random.random([head_dim]) / 10
q_norm_weight_tensor = paddle.to_tensor(q_norm_weight, dtype=dtype)
k_norm_weight_tensor = paddle.to_tensor(k_norm_weight, dtype=dtype)
print("q:", q.shape)
print("k:", k.shape)
bs, q_num_head, seq_len, dim_head = q.shape
_, kv_num_head, _, _ = k.shape
q = q.reshape([-1, head_dim])
k = k.reshape([-1, head_dim])
print("q:", q)
q = fused_rms_norm(q, q_norm_weight_tensor, None, 1e-5)[0]
print("q after norm:", q)
k = fused_rms_norm(k, k_norm_weight_tensor, None, 1e-5)[0]
q = q.reshape([-1, q_num_head, seq_len, dim_head])
k = k.reshape([-1, kv_num_head, seq_len, dim_head])
return q, k, q_norm_weight_tensor, k_norm_weight_tensor
def split_query_by_phase(
query,
seq_lens_encoder,
seq_lens_decoder,
seq_lens_this_time,
q_dim,
k_dim,
v_dim,
):
"""
将 query 拆分为 encoder 和 decoder 的 Q/K/V。
"""
batch = seq_lens_encoder.shape[0]
max_seq = query.shape[0] // batch
# 还原 query 为 [batch, seq, dim]
total_dim = q_dim + k_dim + v_dim
query = paddle.reshape(query, [batch, max_seq, total_dim])
# 计算 mask表示该 batch 是否是 encoder/decoder
is_encoder = (seq_lens_encoder > 0).astype("bool").reshape([-1]) # [batch]
is_decoder = (seq_lens_decoder > 0).astype("bool").reshape([-1]) # [batch]
# 准备输出列表
enc_qs, enc_ks, enc_vs = [], [], []
dec_qs, dec_ks, dec_vs = [], [], []
for i in range(batch):
real_len = int(seq_lens_this_time[i]) # 当前 batch 的有效长度
cur_query = query[i, :real_len, :] # [seq_i, q+k+v]
q, k, v = paddle.split(cur_query, [q_dim, k_dim, v_dim], axis=-1)
if is_encoder[i]:
enc_qs.append(q)
enc_ks.append(k)
enc_vs.append(v)
elif is_decoder[i]:
dec_qs.append(q)
dec_ks.append(k)
dec_vs.append(v)
if enc_qs:
enc_q = paddle.concat(enc_qs, axis=0)
enc_k = paddle.concat(enc_ks, axis=0)
enc_v = paddle.concat(enc_vs, axis=0)
else:
enc_q = enc_k = enc_v = paddle.zeros([0, q_dim], dtype=query.dtype)
if dec_qs:
dec_q = paddle.concat(dec_qs, axis=0)
dec_k = paddle.concat(dec_ks, axis=0)
dec_v = paddle.concat(dec_vs, axis=0)
else:
dec_q = dec_k = dec_v = paddle.zeros([0, q_dim], dtype=query.dtype)
return (enc_q, enc_k, enc_v), (dec_q, dec_k, dec_v)
class TestAppendGroupQueryAttnWithRope(unittest.TestCase):
def setUp(self):
paddle.disable_static()
self.name = "TestAppendGroupQueryAttnWithRope"
self.place = paddle.CUDAPlace(0)
self.batch_size = 1
self.q_num_head = 12
self.kv_num_head = 2
self.seq_len = 64
self.max_dec_len = 64
self.dim_head = 128
self.q_hid_dim = self.q_num_head * self.dim_head
self.kv_hid_dim = self.kv_num_head * self.dim_head
self.blocksize = 64
self.use_neox_rotary_style = False
# max_seq_len = self.seq_len + self.max_dec_len
self.max_seq_len = self.seq_len + self.max_dec_len
self.softmax_scale = self.dim_head**-0.5
self.rope_theta = 10000
self.dtype = "float16"
self.use_qk_norm = True
self.use_mask_offset = False
self.init_tensor()
def init_tensor(self):
self.block_num_per_seq = (self.seq_len + self.max_dec_len + self.blocksize - 1) // self.blocksize
self.rope = RopeEmbedding(self.use_neox_rotary_style)
self.max_block_num = self.block_num_per_seq * self.batch_size
self.free_list = list(range(self.max_block_num - 1, -1, -1))
self.seq_lens_enc = [
self.seq_len,
] * self.batch_size
self.seq_lens_dec = [
0,
] * self.batch_size
self.max_enc_len_this_time = max(self.seq_lens_enc)
self.max_dec_len_this_time = max(self.seq_lens_dec)
self.seq_lens_encoder = paddle.to_tensor(
self.seq_lens_enc,
"int32",
)
self.seq_lens_decoder = paddle.to_tensor(
self.seq_lens_dec,
"int32",
)
self.max_enc_len_this_time = paddle.to_tensor([self.max_enc_len_this_time], "int32", place=paddle.CPUPlace())
self.max_dec_len_this_time = paddle.to_tensor([self.max_dec_len_this_time], "int32", place=paddle.CPUPlace())
self.seq_lens_this_time = self.seq_lens_encoder
self.decoder_batch_ids = paddle.full([self.batch_size], 0, dtype="int32")
self.decoder_tile_ids_per_batch = paddle.full([self.batch_size], 0, dtype="int32")
self.decoder_num_blocks_cpu = paddle.full([1], 0, dtype="int32").pin_memory()
self.max_len_tensor_cpu = paddle.full([8], 0, dtype="int32").cpu()
self.cache_shape = (
self.max_block_num,
self.kv_num_head,
self.blocksize,
self.dim_head,
)
self.scale = 1.0 / np.sqrt(self.dim_head)
self.cache_k = paddle.zeros(shape=self.cache_shape, dtype=self.dtype)
self.cache_v = paddle.zeros(shape=self.cache_shape, dtype=self.dtype)
self.block_tables = paddle.zeros(shape=(self.batch_size, self.block_num_per_seq), dtype="int32")
for i in range(self.batch_size):
need_block_num = (self.seq_len + self.max_dec_len + self.blocksize - 1) // self.blocksize
for j in range(need_block_num):
self.block_tables[i, j] = self.free_list.pop()
(
self.padding_offset,
self.cum_offset,
self.cu_seqlens_q,
self.cu_seqlens_k,
) = get_padding_offset(self.batch_size, self.seq_len, self.seq_lens_this_time)
self.token_num = self.padding_offset.shape[0]
self.mask_offset = None
if self.use_mask_offset:
self.mask_offset = paddle.full(self.seq_len * self.batch_size, 0, "int32")
for i in range(self.batch_size):
for j in range(self.seq_len):
self.mask_offset[i * self.seq_len + j] = j
def cmp_append_attention(self, naive_cache_k=None, naive_cache_v=None, attn_mask=None):
paddle.disable_static()
self.token_num = self.seq_len * self.batch_size
q, k, v, qkv = get_qkv_and_qkv_concat_tensor(
self.batch_size,
self.q_num_head,
self.kv_num_head,
self.seq_len,
self.dim_head,
self.place,
self.dtype,
)
q, k = self.rope._apply_rope(self.rope_emb, q, k, causal=True)
if self.use_qk_norm:
q, k, q_norm_weight, k_norm_weight = apply_qk_norm(self.dim_head, self.dtype, q, k)
else:
q_norm_weight = None
k_norm_weight = None
out_ = naive_attention_impl(
q,
k,
v,
naive_cache_k,
naive_cache_v,
None,
None,
attn_mask,
self.scale,
)
out_ = remove_padding(self.seq_lens_this_time, self.cu_seqlens_q, out_, self.token_num)
speculate_max_draft_token_num = 1
from fastdeploy.model_executor.layers.attention.ops import (
append_attention_with_output,
get_block_shape_and_split_kv_block,
)
(
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
max_len_kv,
) = get_block_shape_and_split_kv_block(
self.seq_lens_encoder,
self.seq_lens_decoder,
self.seq_lens_this_time,
self.decoder_batch_ids,
self.decoder_tile_ids_per_batch,
self.decoder_num_blocks_cpu,
self.max_len_tensor_cpu,
64,
12,
(self.q_num_head + 2 * self.kv_num_head) // self.kv_num_head,
self.blocksize,
speculate_max_draft_token_num + 1,
)
# Warm up
WARM_UP = 1
RUN_TIME = 2
out = paddle.zeros((qkv.shape[0], self.q_hid_dim), dtype=q.dtype).to(q.place)
for i in range(WARM_UP + RUN_TIME):
if i == WARM_UP:
paddle.device.synchronize()
start_time = time.time()
append_attention_with_output(
qkv,
self.cache_k,
self.cache_v,
self.seq_lens_encoder,
self.seq_lens_decoder,
self.seq_lens_this_time,
self.padding_offset,
self.cum_offset,
self.block_tables,
encoder_batch_ids,
encoder_tile_ids_per_batch,
encoder_num_blocks,
kv_batch_ids,
kv_tile_ids_per_batch,
kv_num_blocks,
self.decoder_batch_ids,
self.decoder_tile_ids_per_batch,
self.decoder_num_blocks_cpu,
self.max_len_tensor_cpu,
max_len_kv,
out,
self.rope_emb, # rope_emb
None, # attn_mask
None, # qkv_bias
None, # qkv_out_scales
None, # cache_k_quant_scales
None, # cache_v_quant_scales
None, # cache_k_dequant_scales
None, # cache_v_dequant_scales
None, # cache_k_zp
None, # cache_v_zp
None, # linear_shift
None, # linear_smooth
self.mask_offset, # mask_offset
None, # kv_signal_data
q_norm_weight, # q_norm_weight
k_norm_weight, # k_norm_weight
1e-6,
"fp16",
"none", # cache_quant_type
self.use_neox_rotary_style,
False,
self.max_seq_len,
0.0, # quant_min_bound
0.0, # quant_max_bound
-1, # out_linear_in_scale
64, # encoder_block_shape_q
16, # decoder_block_shape_q
32768, # max_partition_size
32768, # encoder_max_partition_size
speculate_max_draft_token_num + 1, # speculate_max_draft_token_num
True, # causal
False, # speculate_decoder
)
paddle.device.synchronize()
end_time = time.time()
print(f"[append-attn ut] cost_time:{(end_time - start_time) / RUN_TIME * 1000}ms")
naive_cache_k, naive_cache_v = block_cache_to_naive_cache(
self.cache_k,
self.cache_v,
self.batch_size,
self.block_tables,
self.seq_len,
)
np.testing.assert_allclose(
out.numpy(),
out_.numpy(),
rtol=1e-02,
atol=1e-02,
)
def test_all(self):
tmp_position_ids = paddle.arange(self.seq_len + self.max_dec_len).reshape((1, -1))
# appendattn 传的是最大maxseq
if self.use_neox_rotary_style:
self.rope_emb = self.rope.get_neox_style_position_embedding(tmp_position_ids, self.dim_head)
else:
self.rope_emb = self.rope.get_rotary_position_embedding(tmp_position_ids, self.dim_head)
self.attention_mask = create_attn_mask(
self.dtype,
self.batch_size,
[
self.seq_len,
]
* self.batch_size,
)
# encoder
# self.seq_lens_encoder,self.seq_lens_decoder,self.max_enc_len_this_time,self.max_dec_len_this_time=get_encoder_decoder_len(self.batch_size,self.seq_len)
self.seq_lens_this_time = self.seq_lens_encoder
if self.use_mask_offset:
print("encoder mask_offset: ", self.mask_offset)
self.cmp_append_attention(attn_mask=self.attention_mask)
naive_cache_k, naive_cache_v = block_cache_to_naive_cache(
self.cache_k,
self.cache_v,
self.batch_size,
self.block_tables,
self.seq_len,
)
# decoder
self.seq_lens_decoder[:] = self.seq_lens_encoder
self.seq_lens_encoder[:] = 0
self.seq_lens_this_time[:] = 1
self.seq_lens_enc = [
0,
] * self.batch_size
self.seq_lens_dec = [
self.seq_len,
] * self.batch_size
self.max_enc_len_this_time = max(self.seq_lens_enc)
self.max_dec_len_this_time = max(self.seq_lens_dec)
self.max_enc_len_this_time = paddle.to_tensor([self.max_enc_len_this_time], "int32", place=paddle.CPUPlace())
self.max_dec_len_this_time = paddle.to_tensor([self.max_dec_len_this_time], "int32", place=paddle.CPUPlace())
self.seq_len = 1
(
self.padding_offset,
self.cum_offset,
self.cu_seqlens_q,
self.cu_seqlens_k,
) = get_padding_offset(self.batch_size, 1, self.seq_lens_this_time)
if self.use_mask_offset:
self.mask_offset = paddle.full(self.batch_size, 0, "int32")
for i in range(self.batch_size):
self.mask_offset[i] = self.seq_lens_dec[i]
print("decoder mask_offset: ", self.mask_offset)
self.cmp_append_attention(naive_cache_k, naive_cache_v, None)
class TestAppendGroupQueryAttnWithNeoXRope(TestAppendGroupQueryAttnWithRope):
def setUp(self):
paddle.disable_static()
self.name = "TestAppendGroupQueryAttnWithRope"
self.place = paddle.CUDAPlace(0)
self.batch_size = 1
self.q_num_head = 12
self.kv_num_head = 2
self.seq_len = 64
self.max_dec_len = 64
self.dim_head = 128
self.q_hid_dim = self.q_num_head * self.dim_head
self.kv_hid_dim = self.kv_num_head * self.dim_head
self.blocksize = 64
self.use_neox_rotary_style = True
# max_seq_len = self.seq_len + self.max_dec_len
self.max_seq_len = self.seq_len + self.max_dec_len
self.softmax_scale = self.dim_head**-0.5
self.rope_theta = 10000
self.dtype = "float16"
self.use_qk_norm = False
self.use_mask_offset = True
self.init_tensor()
if __name__ == "__main__":
unittest.main()