mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
Extract eh_proj Layer from ParallelLMHead for MTP to Avoid Weight Transposition Issue (#2707)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* fix mtp eh_proj layer * fix mtp update_cfg function * fix stringdoc * simplify class name
This commit is contained in:
133
fastdeploy/model_executor/layers/mtp_linear.py
Normal file
133
fastdeploy/model_executor/layers/mtp_linear.py
Normal file
@@ -0,0 +1,133 @@
|
|||||||
|
"""
|
||||||
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
from paddle import nn
|
||||||
|
from paddle.distributed import fleet
|
||||||
|
|
||||||
|
from .utils import get_tensor
|
||||||
|
|
||||||
|
|
||||||
|
class ParallelEHProjection(nn.Layer):
|
||||||
|
"""
|
||||||
|
"Parallelized Embedding Hidden States Projection.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
fd_config,
|
||||||
|
num_embeddings,
|
||||||
|
embedding_dim,
|
||||||
|
prefix="",
|
||||||
|
with_bias=False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Parallelized Embedding Hidden States Projection.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fd_config (FDConfig): Arguments related to inference, containing
|
||||||
|
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
|
||||||
|
num_attention_heads, and ffn_hidden_size.
|
||||||
|
num_embeddings (int): vocabulary size.
|
||||||
|
embedding_dim (int): size of hidden state.
|
||||||
|
prefix (str): full name of the layer in the state dict
|
||||||
|
"""
|
||||||
|
super(ParallelEHProjection, self).__init__()
|
||||||
|
self.linear_weight_key = prefix + ".weight"
|
||||||
|
if with_bias:
|
||||||
|
self.linear_bias_key = prefix + ".bias"
|
||||||
|
else:
|
||||||
|
self.linear_bias_key = None
|
||||||
|
self.use_ep = fd_config.parallel_config.use_ep
|
||||||
|
self.column_cut = True
|
||||||
|
|
||||||
|
ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear
|
||||||
|
RowParallelLinear = fleet.meta_parallel.RowParallelLinear
|
||||||
|
|
||||||
|
if self.use_ep:
|
||||||
|
self.weight = self.create_parameter(
|
||||||
|
shape=[embedding_dim, num_embeddings],
|
||||||
|
dtype=paddle.get_default_dtype(),
|
||||||
|
is_bias=False,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if self.column_cut:
|
||||||
|
need_gather = True
|
||||||
|
self.out_linear = ColumnParallelLinear(
|
||||||
|
embedding_dim,
|
||||||
|
num_embeddings,
|
||||||
|
mp_group=fleet.get_hybrid_communicate_group().
|
||||||
|
get_model_parallel_group(),
|
||||||
|
weight_attr=None,
|
||||||
|
has_bias=True
|
||||||
|
if self.linear_bias_key is not None else False,
|
||||||
|
gather_output=need_gather,
|
||||||
|
fuse_matmul_bias=False, # False diff更小
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.out_linear = RowParallelLinear(
|
||||||
|
embedding_dim,
|
||||||
|
num_embeddings,
|
||||||
|
mp_group=fleet.get_hybrid_communicate_group().
|
||||||
|
get_model_parallel_group(),
|
||||||
|
weight_attr=None,
|
||||||
|
has_bias=True
|
||||||
|
if self.linear_bias_key is not None else False,
|
||||||
|
input_is_parallel=False,
|
||||||
|
fuse_matmul_bias=False, # False diff更小
|
||||||
|
)
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict):
|
||||||
|
"""
|
||||||
|
Load the checkpoint state dictionary into the layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (dict): A dictionary containing the checkpoint weights and biases.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if self.use_ep:
|
||||||
|
self.weight.set_value(
|
||||||
|
get_tensor(state_dict.pop(self.linear_weight_key)).astype(
|
||||||
|
paddle.get_default_dtype()))
|
||||||
|
else:
|
||||||
|
weight_tensor = get_tensor(
|
||||||
|
state_dict.pop(self.linear_weight_key)).astype(
|
||||||
|
paddle.get_default_dtype())
|
||||||
|
if self.out_linear.weight.shape != weight_tensor.shape:
|
||||||
|
weight_tensor = weight_tensor.transpose([1, 0])
|
||||||
|
self.out_linear.weight.set_value(weight_tensor)
|
||||||
|
|
||||||
|
if self.linear_bias_key is not None:
|
||||||
|
bias = get_tensor(state_dict.pop(self.linear_bias_key)).astype(
|
||||||
|
paddle.get_default_dtype())
|
||||||
|
self.out_linear.bias.set_value(bias)
|
||||||
|
|
||||||
|
def forward(self, input):
|
||||||
|
"""
|
||||||
|
Defines the forward computation of the layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input (Tensor): The input tensor to the layer.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tensor: The output tensor after processing through the layer.
|
||||||
|
"""
|
||||||
|
logits = input
|
||||||
|
if self.use_ep:
|
||||||
|
logits = paddle.matmul(logits, self.weight)
|
||||||
|
else:
|
||||||
|
logits = self.out_linear(logits)
|
||||||
|
return logits
|
@@ -26,7 +26,7 @@ from paddleformers.transformers import PretrainedModel
|
|||||||
from paddleformers.utils.log import logger
|
from paddleformers.utils.log import logger
|
||||||
|
|
||||||
from fastdeploy.config import FDConfig, ModelConfig
|
from fastdeploy.config import FDConfig, ModelConfig
|
||||||
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
from fastdeploy.model_executor.layers.mtp_linear import ParallelEHProjection
|
||||||
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
||||||
from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_DecoderLayer
|
from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_DecoderLayer
|
||||||
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
||||||
@@ -286,7 +286,7 @@ class Ernie4_5_MTPModel(nn.Layer):
|
|||||||
prefix="ernie.mtp_hidden_norm.0",
|
prefix="ernie.mtp_hidden_norm.0",
|
||||||
)
|
)
|
||||||
|
|
||||||
self.eh_proj = ParallelLMHead(
|
self.eh_proj = ParallelEHProjection(
|
||||||
fd_config=fd_config,
|
fd_config=fd_config,
|
||||||
num_embeddings=fd_config.model_config.hidden_size,
|
num_embeddings=fd_config.model_config.hidden_size,
|
||||||
embedding_dim=fd_config.model_config.hidden_size * 2,
|
embedding_dim=fd_config.model_config.hidden_size * 2,
|
||||||
|
@@ -68,8 +68,7 @@ class MTPProposer(Proposer):
|
|||||||
"""
|
"""
|
||||||
Update config for MTP from global config
|
Update config for MTP from global config
|
||||||
"""
|
"""
|
||||||
self.model_config.architectures[0] = self.model_config.architectures[
|
self.model_config.architectures[0] = "Ernie4_5_MTPForCausalLM"
|
||||||
0].replace("MoeForCausalLM", "MTPForCausalLM")
|
|
||||||
self.speculative_config.sharing_model = main_model
|
self.speculative_config.sharing_model = main_model
|
||||||
self.model_config.num_layers = 1
|
self.model_config.num_layers = 1
|
||||||
self.parallel_config.model_name_or_path = (
|
self.parallel_config.model_name_or_path = (
|
||||||
|
Reference in New Issue
Block a user