mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-24 00:53:22 +08:00
fix conflicts for ascend
This commit is contained in:
@@ -245,6 +245,34 @@ class RuntimeOption:
|
||||
return
|
||||
return self._option.use_gpu(device_id)
|
||||
|
||||
def use_xpu(self,
|
||||
device_id=0,
|
||||
l3_workspace_size=16 * 1024 * 1024,
|
||||
locked=False,
|
||||
autotune=True,
|
||||
autotune_file="",
|
||||
precision="int16",
|
||||
adaptive_seqlen=False,
|
||||
enable_multi_stream=False):
|
||||
"""Inference with XPU
|
||||
|
||||
:param device_id: (int)The index of XPU will be used for inference, default 0
|
||||
:param l3_workspace_size: (int)The size of the video memory allocated by the l3 cache, the maximum is 16M, default 16M
|
||||
:param locked: (bool)Whether the allocated L3 cache can be locked. If false, it means that the L3 cache is not locked,
|
||||
and the allocated L3 cache can be shared by multiple models, and multiple models
|
||||
:param autotune: (bool)Whether to autotune the conv operator in the model.
|
||||
If true, when the conv operator of a certain dimension is executed for the first time,
|
||||
it will automatically search for a better algorithm to improve the performance of subsequent conv operators of the same dimension.
|
||||
:param autotune_file: (str)Specify the path of the autotune file. If autotune_file is specified,
|
||||
the algorithm specified in the file will be used and autotune will not be performed again.
|
||||
:param precision: (str)Calculation accuracy of multi_encoder
|
||||
:param adaptive_seqlen: (bool)adaptive_seqlen Is the input of multi_encoder variable length
|
||||
:param enable_multi_stream: (bool)Whether to enable the multi stream of xpu.
|
||||
"""
|
||||
return self._option.use_xpu(device_id, l3_workspace_size, locked,
|
||||
autotune, autotune_file, precision,
|
||||
adaptive_seqlen, enable_multi_stream)
|
||||
|
||||
def use_cpu(self):
|
||||
"""Inference with CPU
|
||||
"""
|
||||
|
@@ -86,7 +86,8 @@ class UIEModel(FastDeployModel):
|
||||
for result in results:
|
||||
uie_result = dict()
|
||||
for key, uie_results in result.items():
|
||||
uie_result[key] = list()
|
||||
for uie_res in uie_results:
|
||||
uie_result[key] = uie_res.get_dict()
|
||||
uie_result[key].append(uie_res.get_dict())
|
||||
new_results += [uie_result]
|
||||
return new_results
|
||||
|
@@ -85,6 +85,19 @@ class PaddleClasModel(FastDeployModel):
|
||||
model_format)
|
||||
assert self.initialized, "PaddleClas model initialize failed."
|
||||
|
||||
def clone(self):
|
||||
"""Clone PaddleClasModel object
|
||||
|
||||
:return: a new PaddleClasModel object
|
||||
"""
|
||||
|
||||
class PaddleClasCloneModel(PaddleClasModel):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = PaddleClasCloneModel(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
def predict(self, im, topk=1):
|
||||
"""Classify an input image
|
||||
|
||||
|
@@ -24,3 +24,4 @@ from .contrib.yolov6 import YOLOv6
|
||||
from .contrib.yolov7end2end_trt import YOLOv7End2EndTRT
|
||||
from .contrib.yolov7end2end_ort import YOLOv7End2EndORT
|
||||
from .ppdet import *
|
||||
from .contrib.rkyolo import *
|
||||
|
@@ -0,0 +1,16 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from .rkyolov5 import *
|
195
python/fastdeploy/vision/detection/contrib/rkyolo/rkyolov5.py
Normal file
195
python/fastdeploy/vision/detection/contrib/rkyolo/rkyolov5.py
Normal file
@@ -0,0 +1,195 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from ..... import FastDeployModel, ModelFormat
|
||||
from ..... import c_lib_wrap as C
|
||||
|
||||
|
||||
class RKYOLOPreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for RKYOLOV5
|
||||
"""
|
||||
self._preprocessor = C.vision.detection.RKYOLOPreprocessor()
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for RKYOLOV5
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._preprocessor.size
|
||||
|
||||
@property
|
||||
def padding_value(self):
|
||||
"""
|
||||
padding value for preprocessing, default [114.0, 114.0, 114.0]
|
||||
"""
|
||||
# padding value, size should be the same as channels
|
||||
return self._preprocessor.padding_value
|
||||
|
||||
@property
|
||||
def is_scale_up(self):
|
||||
"""
|
||||
is_scale_up for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
|
||||
"""
|
||||
return self._preprocessor.is_scale_up
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)), \
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2, \
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._preprocessor.size = wh
|
||||
|
||||
@padding_value.setter
|
||||
def padding_value(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
list), "The value to set `padding_value` must be type of list."
|
||||
self._preprocessor.padding_value = value
|
||||
|
||||
@is_scale_up.setter
|
||||
def is_scale_up(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `is_scale_up` must be type of bool."
|
||||
self._preprocessor.is_scale_up = value
|
||||
|
||||
|
||||
class RKYOLOPostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for RKYOLOV5
|
||||
"""
|
||||
self._postprocessor = C.vision.detection.RKYOLOPostprocessor()
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for RKYOLOV5
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:param: ims_info: (list of dict)Record input_shape and output_shape
|
||||
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
@property
|
||||
def conf_threshold(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.25
|
||||
"""
|
||||
return self._postprocessor.conf_threshold
|
||||
|
||||
@property
|
||||
def nms_threshold(self):
|
||||
"""
|
||||
nms threshold for postprocessing, default is 0.5
|
||||
"""
|
||||
return self._postprocessor.nms_threshold
|
||||
|
||||
@property
|
||||
def multi_label(self):
|
||||
"""
|
||||
multi_label for postprocessing, set true for eval, default is True
|
||||
"""
|
||||
return self._postprocessor.multi_label
|
||||
|
||||
@conf_threshold.setter
|
||||
def conf_threshold(self, conf_threshold):
|
||||
assert isinstance(conf_threshold, float), \
|
||||
"The value to set `conf_threshold` must be type of float."
|
||||
self._postprocessor.conf_threshold = conf_threshold
|
||||
|
||||
@nms_threshold.setter
|
||||
def nms_threshold(self, nms_threshold):
|
||||
assert isinstance(nms_threshold, float), \
|
||||
"The value to set `nms_threshold` must be type of float."
|
||||
self._postprocessor.nms_threshold = nms_threshold
|
||||
|
||||
@multi_label.setter
|
||||
def multi_label(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `multi_label` must be type of bool."
|
||||
self._postprocessor.multi_label = value
|
||||
|
||||
|
||||
class RKYOLOV5(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a RKYOLOV5 model exported by RKYOLOV5.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./yolov5.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(RKYOLOV5, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.detection.RKYOLOV5(
|
||||
model_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "RKYOLOV5 initialize failed."
|
||||
|
||||
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
|
||||
"""Detect an input image
|
||||
|
||||
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:param conf_threshold: confidence threshold for postprocessing, default is 0.25
|
||||
:param nms_iou_threshold: iou threshold for NMS, default is 0.5
|
||||
:return: DetectionResult
|
||||
"""
|
||||
|
||||
self.postprocessor.conf_threshold = conf_threshold
|
||||
self.postprocessor.nms_threshold = nms_iou_threshold
|
||||
return self._model.predict(input_image)
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Classify a batch of input image
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get RKYOLOV5Preprocessor object of the loaded model
|
||||
|
||||
:return RKYOLOV5Preprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get RKYOLOV5Postprocessor object of the loaded model
|
||||
|
||||
:return RKYOLOV5Postprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
@@ -99,6 +99,19 @@ class PPYOLOE(FastDeployModel):
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
def clone(self):
|
||||
"""Clone PPYOLOE object
|
||||
|
||||
:return: a new PPYOLOE object
|
||||
"""
|
||||
|
||||
class PPYOLOEClone(PPYOLOE):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = PPYOLOEClone(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get PaddleDetPreprocessor object of the loaded model
|
||||
@@ -139,6 +152,19 @@ class PPYOLO(PPYOLOE):
|
||||
model_format)
|
||||
assert self.initialized, "PPYOLO model initialize failed."
|
||||
|
||||
def clone(self):
|
||||
"""Clone PPYOLO object
|
||||
|
||||
:return: a new PPYOLO object
|
||||
"""
|
||||
|
||||
class PPYOLOClone(PPYOLO):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = PPYOLOClone(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
|
||||
class PaddleYOLOX(PPYOLOE):
|
||||
def __init__(self,
|
||||
@@ -164,6 +190,19 @@ class PaddleYOLOX(PPYOLOE):
|
||||
model_format)
|
||||
assert self.initialized, "PaddleYOLOX model initialize failed."
|
||||
|
||||
def clone(self):
|
||||
"""Clone PaddleYOLOX object
|
||||
|
||||
:return: a new PaddleYOLOX object
|
||||
"""
|
||||
|
||||
class PaddleYOLOXClone(PaddleYOLOX):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = PaddleYOLOXClone(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
|
||||
class PicoDet(PPYOLOE):
|
||||
def __init__(self,
|
||||
@@ -188,6 +227,19 @@ class PicoDet(PPYOLOE):
|
||||
model_format)
|
||||
assert self.initialized, "PicoDet model initialize failed."
|
||||
|
||||
def clone(self):
|
||||
"""Clone PicoDet object
|
||||
|
||||
:return: a new PicoDet object
|
||||
"""
|
||||
|
||||
class PicoDetClone(PicoDet):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = PicoDetClone(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
|
||||
class FasterRCNN(PPYOLOE):
|
||||
def __init__(self,
|
||||
@@ -213,6 +265,19 @@ class FasterRCNN(PPYOLOE):
|
||||
model_format)
|
||||
assert self.initialized, "FasterRCNN model initialize failed."
|
||||
|
||||
def clone(self):
|
||||
"""Clone FasterRCNN object
|
||||
|
||||
:return: a new FasterRCNN object
|
||||
"""
|
||||
|
||||
class FasterRCNNClone(FasterRCNN):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = FasterRCNNClone(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
|
||||
class YOLOv3(PPYOLOE):
|
||||
def __init__(self,
|
||||
@@ -238,6 +303,19 @@ class YOLOv3(PPYOLOE):
|
||||
model_format)
|
||||
assert self.initialized, "YOLOv3 model initialize failed."
|
||||
|
||||
def clone(self):
|
||||
"""Clone YOLOv3 object
|
||||
|
||||
:return: a new YOLOv3 object
|
||||
"""
|
||||
|
||||
class YOLOv3Clone(YOLOv3):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = YOLOv3Clone(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
|
||||
class MaskRCNN(PPYOLOE):
|
||||
def __init__(self,
|
||||
@@ -273,6 +351,19 @@ class MaskRCNN(PPYOLOE):
|
||||
raise Exception(
|
||||
"batch_predict is not supported for MaskRCNN model now.")
|
||||
|
||||
def clone(self):
|
||||
"""Clone MaskRCNN object
|
||||
|
||||
:return: a new MaskRCNN object
|
||||
"""
|
||||
|
||||
class MaskRCNNClone(MaskRCNN):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = MaskRCNNClone(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
|
||||
class SSD(PPYOLOE):
|
||||
def __init__(self,
|
||||
@@ -293,7 +384,120 @@ class SSD(PPYOLOE):
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "SSD model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.SSD(
|
||||
self._model = C.vision.detection.SSD(model_file, params_file,
|
||||
config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "SSD model initialize failed."
|
||||
|
||||
def clone(self):
|
||||
"""Clone SSD object
|
||||
|
||||
:return: a new SSD object
|
||||
"""
|
||||
|
||||
class SSDClone(SSD):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = SSDClone(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
|
||||
class PaddleYOLOv5(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a YOLOv5 model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g yolov5/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g yolov5/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "PaddleYOLOv5 model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.PaddleYOLOv5(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "SSD model initialize failed."
|
||||
assert self.initialized, "PaddleYOLOv5 model initialize failed."
|
||||
|
||||
|
||||
class PaddleYOLOv6(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a YOLOv6 model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g yolov6/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g yolov6/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "PaddleYOLOv6 model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.PaddleYOLOv6(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "PaddleYOLOv6 model initialize failed."
|
||||
|
||||
|
||||
class PaddleYOLOv7(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a YOLOv7 model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g yolov7/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g yolov7/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "PaddleYOLOv7 model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.PaddleYOLOv7(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "PaddleYOLOv7 model initialize failed."
|
||||
|
||||
|
||||
class RTMDet(PPYOLOE):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a RTMDet model exported by PaddleDetection.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g rtmdet/model.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g rtmdet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPYOLOE, self).__init__(runtime_option)
|
||||
|
||||
assert model_format == ModelFormat.PADDLE, "RTMDet model only support model format of ModelFormat.Paddle now."
|
||||
self._model = C.vision.detection.RTMDet(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "RTMDet model initialize failed."
|
@@ -14,6 +14,7 @@
|
||||
|
||||
from __future__ import absolute_import
|
||||
from .contrib.yolov5face import YOLOv5Face
|
||||
from .contrib.yolov7face import *
|
||||
from .contrib.retinaface import RetinaFace
|
||||
from .contrib.scrfd import SCRFD
|
||||
from .contrib.ultraface import UltraFace
|
||||
|
166
python/fastdeploy/vision/facedet/contrib/yolov7face.py
Normal file
166
python/fastdeploy/vision/facedet/contrib/yolov7face.py
Normal file
@@ -0,0 +1,166 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
|
||||
|
||||
class Yolov7FacePreprocessor:
|
||||
def __init__(self):
|
||||
"""Create a preprocessor for Yolov7Face
|
||||
"""
|
||||
self._preprocessor = C.vision.facedet.Yolov7Preprocessor()
|
||||
|
||||
def run(self, input_ims):
|
||||
"""Preprocess input images for Yolov7Face
|
||||
|
||||
:param: input_ims: (list of numpy.ndarray)The input image
|
||||
:return: list of FDTensor
|
||||
"""
|
||||
return self._preprocessor.run(input_ims)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""
|
||||
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640, 640]
|
||||
"""
|
||||
return self._preprocessor.size
|
||||
|
||||
@property
|
||||
def padding_color_value(self):
|
||||
"""
|
||||
padding value for preprocessing, default [114.0, 114.0, 114.0]
|
||||
"""
|
||||
# padding value, size should be the same as channels
|
||||
return self._preprocessor.padding_color_value
|
||||
|
||||
@property
|
||||
def is_scale_up(self):
|
||||
"""
|
||||
is_scale_up for preprocessing, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0, default true
|
||||
"""
|
||||
return self._preprocessor.is_scale_up
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, (list, tuple)),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._preprocessor.size = wh
|
||||
|
||||
@padding_color_value.setter
|
||||
def padding_color_value(self, value):
|
||||
assert isinstance(
|
||||
value, list
|
||||
), "The value to set `padding_color_value` must be type of list."
|
||||
self._preprocessor.padding_color_value = value
|
||||
|
||||
@is_scale_up.setter
|
||||
def is_scale_up(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `is_scale_up` must be type of bool."
|
||||
self._preprocessor.is_scale_up = value
|
||||
|
||||
|
||||
class Yolov7FacePostprocessor:
|
||||
def __init__(self):
|
||||
"""Create a postprocessor for Yolov7Face
|
||||
"""
|
||||
self._postprocessor = C.vision.facedet.Yolov7FacePostprocessor()
|
||||
|
||||
def run(self, runtime_results, ims_info):
|
||||
"""Postprocess the runtime results for Yolov7Face
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:param: ims_info: (list of dict)Record input_shape and output_shape
|
||||
:return: list of DetectionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results, ims_info)
|
||||
|
||||
@property
|
||||
def conf_threshold(self):
|
||||
"""
|
||||
confidence threshold for postprocessing, default is 0.5
|
||||
"""
|
||||
return self._postprocessor.conf_threshold
|
||||
|
||||
@property
|
||||
def nms_threshold(self):
|
||||
"""
|
||||
nms threshold for postprocessing, default is 0.45
|
||||
"""
|
||||
return self._postprocessor.nms_threshold
|
||||
|
||||
@conf_threshold.setter
|
||||
def conf_threshold(self, conf_threshold):
|
||||
assert isinstance(conf_threshold, float),\
|
||||
"The value to set `conf_threshold` must be type of float."
|
||||
self._postprocessor.conf_threshold = conf_threshold
|
||||
|
||||
@nms_threshold.setter
|
||||
def nms_threshold(self, nms_threshold):
|
||||
assert isinstance(nms_threshold, float),\
|
||||
"The value to set `nms_threshold` must be type of float."
|
||||
self._postprocessor.nms_threshold = nms_threshold
|
||||
|
||||
|
||||
class YOLOv7Face(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.ONNX):
|
||||
"""Load a YOLOv7Face model exported by YOLOv7Face.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g ./yolov7face.onnx
|
||||
:param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
super(YOLOv7Face, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.facedet.YOLOv7Face(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
|
||||
assert self.initialized, "YOLOv7Face initialize failed."
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Classify a batch of input image
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of DetectionResult
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get YOLOv7Preprocessor object of the loaded model
|
||||
|
||||
:return YOLOv7Preprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get YOLOv7Postprocessor object of the loaded model
|
||||
|
||||
:return YOLOv7Postprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
@@ -41,14 +41,18 @@ class PPTinyPose(FastDeployModel):
|
||||
model_format)
|
||||
assert self.initialized, "PPTinyPose model initialize failed."
|
||||
|
||||
def predict(self, input_image):
|
||||
def predict(self, input_image, detection_result=None):
|
||||
"""Detect keypoints in an input image
|
||||
|
||||
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||
:param detection_result: (DetectionResult)Pre-detected boxes result, default is None
|
||||
:return: KeyPointDetectionResult
|
||||
"""
|
||||
assert input_image is not None, "The input image data is None."
|
||||
return self._model.predict(input_image)
|
||||
if detection_result:
|
||||
return self._model.predict(input_image, detection_result)
|
||||
else:
|
||||
return self._model.predict(input_image)
|
||||
|
||||
@property
|
||||
def use_dark(self):
|
||||
|
@@ -57,6 +57,19 @@ class PaddleSegModel(FastDeployModel):
|
||||
"""
|
||||
return self._model.batch_predict(image_list)
|
||||
|
||||
def clone(self):
|
||||
"""Clone PaddleSegModel object
|
||||
|
||||
:return: a new PaddleSegModel object
|
||||
"""
|
||||
|
||||
class PaddleSegCloneModel(PaddleSegModel):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = PaddleSegCloneModel(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get PaddleSegPreprocessor object of the loaded model
|
||||
|
Reference in New Issue
Block a user