Merge vl execution path into normal execution path (#2829)

* merge vl model into gpu_model runner

Change-Id: I9f4691a3d5f135e8d72b1d58abcd15ef3aa3f2a6

* fix chinese

Change-Id: Ic7405109b984c21e076fb3b01ff6feb571d0119a

* fix the parse parameter

Change-Id: I4cd62ee87c06220af580d91e347145d4394917fe

* fix the bug in online_inference

Change-Id: Idb111bb2114e83017c4050b2a68cf039c6d3c559

* polish code

Change-Id: I7d4194102c2f1b0743b74fbd5fc284eb8ef4d17c
This commit is contained in:
Zero Rains
2025-07-15 22:20:03 +08:00
committed by GitHub
parent 5fc659b900
commit e7bcbbab52
9 changed files with 441 additions and 1732 deletions

View File

@@ -30,7 +30,8 @@ from fastdeploy.model_executor.guided_decoding.base_guided_decoding import \
from fastdeploy.model_executor.layers.attention import get_attention_backend
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
AttentionBackend
from fastdeploy.model_executor.layers.rotary_embedding import get_rope
from fastdeploy.model_executor.layers.rotary_embedding import (get_rope,
get_rope_3d)
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import (
Sampler, SpeculativeSampler)
@@ -46,9 +47,14 @@ from fastdeploy.platforms import current_platform
if not current_platform.is_dcu():
from fastdeploy.spec_decode import MTPProposer, NgramProposer
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
from fastdeploy.input.mm_processor import DataProcessor
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import \
ScatterOp
from fastdeploy.worker.model_runner_base import ModelRunnerBase
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
from fastdeploy.worker.utils import check_safetensors_model
class GPUModelRunner(ModelRunnerBase):
@@ -61,6 +67,7 @@ class GPUModelRunner(ModelRunnerBase):
rank: int,
local_rank: int):
super().__init__(fd_config=fd_config, device=device)
self.enable_mm = self.model_config.enable_mm
self.rank = rank
self.local_rank = local_rank
self.device_id = device_id
@@ -72,6 +79,37 @@ class GPUModelRunner(ModelRunnerBase):
if self.fd_config.parallel_config.guided_decoding_backend != "off":
self.guided_backend = get_guided_backend(fd_config=self.fd_config)
# VL model config:
if self.enable_mm:
model_path = os.path.dirname(self.parallel_config.model_name_or_path)
self.is_safetensors_model = check_safetensors_model(
self.parallel_config.model_name_or_path)
if not self.is_safetensors_model:
self.tokenizer_path = self.image_preprocessor_path = model_path
else:
self.tokenizer_path = self.parallel_config.model_name_or_path
self.image_preprocessor_path = self.parallel_config.model_name_or_path
self.vision_model_name_or_path = os.path.join(
model_path, "DFNRopeVisionTransformer")
self.amp_black = [
"reduce_sum",
"c_softmax_with_cross_entropy",
"elementwise_div",
"sin",
"cos",
"sort",
"multinomial",
]
self.amp_white = [
"lookup_table",
"lookup_table_v2",
"flash_attn",
"matmul",
"matmul_v2",
"fused_gemm_epilogue",
]
# Sampler
if not self.speculative_decoding:
self.sampler = Sampler()
@@ -216,45 +254,98 @@ class GPUModelRunner(ModelRunnerBase):
logger.info(
f"prefill_chunk_info: {request.prefill_chunk_info}")
token_chunk_size = request.prefill_chunk_info[0]
if self.enable_mm:
inputs = self._preprocess_mm_task(token_chunk_size)
if inputs.get("images") is not None:
self.share_inputs["image_features"] = self.extract_vision_features(
inputs)
else:
# Compatible with the situation that lacks images and videos
self.share_inputs["image_features"] = None
if request.multimodal_inputs["position_ids"] is not None:
position_ids = paddle.to_tensor(
request.multimodal_inputs["position_ids"],
dtype="int64").unsqueeze([0])
else:
position_ids = None
token_chunk_size = inputs["input_ids"].shape[1]
request.set("start_idx", token_chunk_size)
self.share_inputs["input_ids"][
idx:idx + 1, :token_chunk_size] = inputs["input_ids"]
else:
self.share_inputs['input_ids'][
idx, :token_chunk_size] = np.array(
request.prompt_token_ids[:token_chunk_size])
self.share_inputs['seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs['step_seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["seq_lens_this_time"][
idx:idx + 1] = token_chunk_size
self.share_inputs['input_ids'][
idx, :token_chunk_size] = np.array(
request.prompt_token_ids[:token_chunk_size])
self.share_inputs['step_seq_lens_encoder'][
idx:idx + 1] = token_chunk_size
self.share_inputs['seq_lens_encoder'][idx:idx +
1] = token_chunk_size
self.share_inputs['seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs['step_seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
1] = token_chunk_size
else:
self.share_inputs['seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs['step_seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
if self.enable_mm:
inputs = self._preprocess_mm_task(request.multimodal_inputs)
if inputs.get("images") is not None:
self.share_inputs[
"image_features"] = self.extract_vision_features(
inputs)
else:
# Compatible with the situation that lacks images and videos
self.share_inputs["image_features"] = None
position_ids = inputs["position_ids"]
length = inputs["input_ids"].shape[1]
self.share_inputs["input_ids"][
idx:idx + 1, :length] = inputs["input_ids"]
else:
self.share_inputs['seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs['step_seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs['seq_lens_this_time'][idx:idx +
1] = length
self.share_inputs['step_seq_lens_encoder'][idx:idx +
1] = length
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = length
if self.enable_mm:
enable_thinking = request.get("enable_thinking", True)
enable_thinking = enable_thinking if enable_thinking is not None else True
self.share_inputs["enable_thinking"][:] = enable_thinking
self.share_inputs["need_think_end"][
idx:idx + 1, :] = 1 if enable_thinking else 0
self.share_inputs["reasoning_index"][
idx:idx + 1, :] = request.get("reasoning_max_tokens", 2048)
self.share_inputs["rope_emb"][idx:idx +
1, :] = self.prepare_rope3d(
position_ids, request.get("max_tokens", 2048))
self.share_inputs["seq_lens_decoder"][idx:idx + 1] = 0
def get_attr_from_request(request, attr, default_value=None):
res = request.get(attr, default_value)
if res is not None:
return res
else:
return default_value
if len(request.eos_token_ids
) < self.parallel_config.eos_tokens_lens:
request.eos_token_ids.append(request.eos_token_ids[0])
self.share_inputs["eos_token_id"][:] = np.array(
request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx:idx + 1] = request.get("top_p", 0.7)
self.share_inputs["top_p"][idx:idx + 1] = get_attr_from_request(request, "top_p", 0.7)
self.share_inputs["top_k"][idx:idx + 1] = request.get("top_k", 0)
self.share_inputs["temperature"][idx:idx + 1] = request.get(
"temperature", 0.95)
self.share_inputs["penalty_score"][idx:idx + 1] = request.get(
"repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx:idx + 1] = request.get(
"frequency_penalty", 0.0)
self.share_inputs["presence_score"][idx:idx + 1] = request.get(
"presence_penalty", 0.0)
self.share_inputs["temperature"][idx:idx + 1] = get_attr_from_request(request,"temperature", 0.95)
self.share_inputs["penalty_score"][idx:idx + 1] = get_attr_from_request(
request, "repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx:idx + 1] = get_attr_from_request(
request, "frequency_penalty", 0.0)
self.share_inputs["presence_score"][idx:idx + 1] = get_attr_from_request(
request, "presence_penalty", 0.0)
self.share_inputs["min_dec_len"][idx:idx + 1] = request.get(
"min_tokens", 1)
@@ -301,6 +392,9 @@ class GPUModelRunner(ModelRunnerBase):
expected_decode_len: int):
""" Set dummy prefill inputs to share_inputs """
# NOTE(gongshaotian): The maximum decoding length is equal to the expected decoded tokens plus the eos token
if self.enable_mm:
self.share_inputs["free_list"] = paddle.to_tensor([], dtype="int32")
self.share_inputs["free_list_len"][0] = 0
max_dec_len = expected_decode_len + 1
full_length = min(num_tokens // batch_size,
self.parallel_config.max_model_len - max_dec_len)
@@ -476,11 +570,12 @@ class GPUModelRunner(ModelRunnerBase):
self.parallel_config.max_model_len).reshape((1, -1))
# TODO(gongshaotian): move to models
self.share_inputs["rope_emb"] = get_rope(
rotary_dim=self.model_config.head_dim,
position_ids=tmp_position_ids,
base=self.model_config.rope_theta,
model_config=self.model_config)
if not self.enable_mm:
self.share_inputs["rope_emb"] = get_rope(
rotary_dim=self.model_config.head_dim,
position_ids=tmp_position_ids,
base=self.model_config.rope_theta,
model_config=self.model_config)
# Set block tables
pre_max_block_num = (
@@ -541,6 +636,24 @@ class GPUModelRunner(ModelRunnerBase):
fill_value=0,
dtype="int32")
if self.enable_mm:
head_dim = self.model_config.head_dim
self.share_inputs["rope_emb"] = paddle.full(shape=[
max_num_seqs, 2, 1, self.parallel_config.max_model_len, 1, head_dim // 2
],
fill_value=0,
dtype="float32")
self.share_inputs["image_features"] = None
self.share_inputs["need_think_end"] = paddle.full(shape=[max_num_seqs, 1],
fill_value=0,
dtype="int32")
self.share_inputs["enable_thinking"] = paddle.full(shape=[1],
fill_value=True,
dtype="bool")
self.share_inputs["reasoning_index"] = paddle.full(shape=[max_num_seqs, 1],
fill_value=0,
dtype="int32")
def _prepare_inputs(self) -> None:
""" Prepare the model inputs """
# Remove padding
@@ -598,6 +711,8 @@ class GPUModelRunner(ModelRunnerBase):
f"Starting to load model {self.model_config.architectures[0]}")
time_before_load = time.perf_counter()
# 1. Load original model
if self.enable_mm:
self.load_mm_config_and_image_preprocess()
self.model = get_model_from_loader(fd_config=self.fd_config)
# 1.1 Load RL dynamic model
if self.fd_config.load_config.dynamic_load_weight:
@@ -756,24 +871,29 @@ class GPUModelRunner(ModelRunnerBase):
> 1).sum() > 0)
self.forward_meta.step_use_cudagraph = is_decode_batch and in_capturing
self.forward_meta.is_decode_batch = is_decode_batch
model_output = self.model(
ids_remove_padding=self.share_inputs["ids_remove_padding"],
forward_meta=self.forward_meta)
if self.enable_mm:
hidden_states = model_output = self.model(self.share_inputs["ids_remove_padding"],
self.share_inputs["image_features"],
self.forward_meta)
else:
model_output = self.model(
ids_remove_padding=self.share_inputs["ids_remove_padding"],
forward_meta=self.forward_meta)
hiddden_states = rebuild_padding(
model_output,
self.share_inputs["cum_offsets"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["output_padding_offset"]
if self.speculative_decoding else
None, # speculative decoding requires
self.parallel_config.max_model_len,
)
hidden_states = rebuild_padding(
model_output,
self.share_inputs["cum_offsets"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["output_padding_offset"]
if self.speculative_decoding else
None, # speculative decoding requires
self.parallel_config.max_model_len,
)
# 4. Execute spec decode
logits = self.model.compute_logits(hiddden_states)
logits = self.model.compute_logits(hidden_states)
if not self.speculative_decoding:
set_value_by_flags_and_idx(
@@ -831,7 +951,15 @@ class GPUModelRunner(ModelRunnerBase):
accept_tokens=self.share_inputs["accept_tokens"]
if self.speculative_decoding else None,
accept_num=self.share_inputs["accept_num"]
if self.speculative_decoding else None)
if self.speculative_decoding else None,
enable_thinking= self.share_inputs["enable_thinking"]
if self.enable_mm else None,
think_end_id=self.model_config.think_end_id
if self.enable_mm else -1,
need_think_end=self.share_inputs["need_think_end"]
if self.enable_mm else None,
reasoning_index=self.share_inputs["reasoning_index"]
if self.enable_mm else None)
post_process(sampler_output=sampler_output,
model_output=model_output_data,
@@ -861,7 +989,6 @@ class GPUModelRunner(ModelRunnerBase):
"""
if not self.parallel_config.enable_chunked_prefill:
return
for task in tasks:
if task.get("prefill_chunk_info", None) is None:
continue
@@ -875,28 +1002,46 @@ class GPUModelRunner(ModelRunnerBase):
logger.debug(
f"{task.request_id} chunked prefill {task.chunk_idx}/{len(task.prefill_chunk_info)}"
)
start_idx = sum(task.prefill_chunk_info[:task.chunk_idx])
if not self.enable_mm:
start_idx = sum(task.prefill_chunk_info[:task.chunk_idx])
if task.chunk_idx == len(task.prefill_chunk_info):
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = 1
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = 0
self.share_inputs["step_idx"][idx:idx + 1] = 1
self.share_inputs["seq_lens_decoder"][
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
if self.enable_mm:
self.share_inputs["seq_lens_decoder"][idx:idx +
1] = task.start_idx
else:
self.share_inputs["seq_lens_decoder"][
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
del self.restore_chunked_prefill_request[task.request_id]
else:
token_chunk_size = task.prefill_chunk_info[task.chunk_idx]
if self.enable_mm:
inputs = self._preprocess_mm_task(task.prefill_chunk_info[task.chunk_idx])
if inputs.get("images") is not None:
self.share_inputs[
"image_features"] = self.extract_vision_features(
inputs)
else:
# Compatible with the situation that lacks images and videos
self.share_inputs["image_features"] = None
token_chunk_size = inputs["input_ids"].shape[1]
self.share_inputs["input_ids"][idx:idx + 1, :token_chunk_size] = inputs["input_ids"]
self.share_inputs["seq_lens_decoder"][idx:idx +1] = task.start_idx
task.start_idx += token_chunk_size
else:
self.share_inputs['input_ids'][idx, :token_chunk_size] = np.array(
task.prompt_token_ids[start_idx:start_idx +
token_chunk_size])
self.share_inputs["seq_lens_decoder"][
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
self.share_inputs["seq_lens_this_time"][idx:idx +
1] = token_chunk_size
self.share_inputs['input_ids'][
idx, :token_chunk_size] = np.array(
task.prompt_token_ids[start_idx:start_idx +
token_chunk_size])
self.share_inputs['seq_lens_encoder'][idx:idx +
1] = token_chunk_size
self.share_inputs["step_idx"][idx:idx + 1] = 0
self.share_inputs["seq_lens_decoder"][
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
if self.speculative_decoding and self.proposer.is_chunk_prefill_enabled(
):
self.proposer.update_task_chunk_prefill(task)
@@ -988,23 +1133,28 @@ class GPUModelRunner(ModelRunnerBase):
> 1).sum() > 0)
self.forward_meta.step_use_cudagraph = self.use_cudagraph and is_decode_batch
self.forward_meta.is_decode_batch = is_decode_batch
model_output = self.model(
ids_remove_padding=self.share_inputs["ids_remove_padding"],
forward_meta=self.forward_meta)
hiddden_states = rebuild_padding(
model_output,
self.share_inputs["cum_offsets"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["output_padding_offset"]
if self.speculative_decoding else None,
self.parallel_config.max_model_len,
)
if self.enable_mm:
hidden_states = model_output = self.model(self.share_inputs["ids_remove_padding"],
self.share_inputs["image_features"],
self.forward_meta)
else:
model_output = self.model(
ids_remove_padding=self.share_inputs["ids_remove_padding"],
forward_meta=self.forward_meta)
hidden_states = rebuild_padding(
model_output,
self.share_inputs["cum_offsets"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["output_padding_offset"]
if self.speculative_decoding else None,
self.parallel_config.max_model_len,
)
# 4. Compute logits, Sample
logits = self.model.compute_logits(hiddden_states)
logits = self.model.compute_logits(hidden_states)
if not self.speculative_decoding:
set_value_by_flags_and_idx(
@@ -1063,7 +1213,15 @@ class GPUModelRunner(ModelRunnerBase):
accept_tokens=self.share_inputs["accept_tokens"]
if self.speculative_decoding else None,
accept_num=self.share_inputs["accept_num"]
if self.speculative_decoding else None)
if self.speculative_decoding else None,
enable_thinking= self.share_inputs["enable_thinking"]
if self.enable_mm else None,
think_end_id=self.model_config.think_end_id
if self.enable_mm else -1,
need_think_end=self.share_inputs["need_think_end"]
if self.enable_mm else None,
reasoning_index=self.share_inputs["reasoning_index"]
if self.enable_mm else None)
if self.speculative_config.method in ["mtp"] and \
self.parallel_config.splitwise_role == "prefill":
@@ -1240,3 +1398,155 @@ class GPUModelRunner(ModelRunnerBase):
self.initialize_kv_cache()
self.dynamic_weight_manager._log_memory(
"dynamic weight manager update all memory")
def _init_image_preprocess(self) -> None:
processor = DataProcessor(
tokenizer_name=self.tokenizer_path,
image_preprocessor_name=str(self.image_preprocessor_path),
)
processor.eval()
image_preprocess = processor.image_preprocessor
image_preprocess.image_mean_tensor = paddle.to_tensor(
image_preprocess.image_mean, dtype="float32").reshape([1, 3, 1, 1])
image_preprocess.image_std_tensor = paddle.to_tensor(
image_preprocess.image_std, dtype="float32").reshape([1, 3, 1, 1])
image_preprocess.rescale_factor = paddle.to_tensor(
image_preprocess.rescale_factor, dtype="float32")
image_preprocess.image_mean_tensor = image_preprocess.image_mean_tensor.squeeze(
[-2, -1]).repeat_interleave(self.model_config.vision_config.patch_size**2 * 1,
-1)
image_preprocess.image_std_tensor = image_preprocess.image_std_tensor.squeeze(
[-2, -1]).repeat_interleave(self.model_config.vision_config.patch_size**2 * 1,
-1)
self.image_preprocess = image_preprocess
def load_mm_config_and_image_preprocess(self) -> None:
tokenizer = ErnieBotTokenizer.from_pretrained(
self.tokenizer_path,
model_max_length=self.parallel_config.max_model_len,
padding_side="right",
use_fast=False,
)
tokenizer.ignored_index = -100
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
self.fd_config.model_config.tensor_parallel_degree = self.parallel_config.tensor_parallel_size
self.fd_config.model_config.tensor_parallel_rank = self.parallel_config.tensor_parallel_rank
self.fd_config.model_config.moe_group="dummy"
self.fd_config.parallel_config.column_cut = False
vision_config = self.fd_config.model_config.vision_config
vision_config.attn_sep = False
vision_config.dtype = "bfloat16"
vision_config.tensor_parallel_degree = self.parallel_config.tensor_parallel_size
vision_config.tensor_parallel_rank = self.parallel_config.tensor_parallel_rank
self.fd_config.model_config.pixel_hidden_size = vision_config.hidden_size
self.fd_config.model_config.im_patch_id = tokenizer.get_vocab()[
"<|IMAGE_PLACEHOLDER|>"
]
self.fd_config.model_config.think_end_id = tokenizer.get_vocab()["</think>"]
self.fd_config.model_config.max_text_id = self.fd_config.model_config.im_patch_id
self.fd_config.model_config.sequence_parallel = False
self.model_config = self.fd_config.model_config
self._init_image_preprocess()
def _preprocess_mm_task(self, one: dict) -> None:
"""process batch"""
input_ids = one["input_ids"][np.newaxis, :]
input_ids = paddle.to_tensor(input_ids, dtype=paddle.int64)
token_type_ids = one["token_type_ids"][np.newaxis, :]
token_type_ids = paddle.to_tensor(token_type_ids, dtype=paddle.int64)
if one["images"] is not None:
image_type_ids = one["image_type_ids"][np.newaxis, :]
images = one["images"]
image_type_ids = paddle.to_tensor(image_type_ids,
dtype=paddle.int64)
images = paddle.to_tensor(images, dtype="uint8")
grid_thw = paddle.to_tensor(one["grid_thw"], dtype="int64")
else:
image_type_ids = None
images = None
grid_thw = None
if one["position_ids"] is not None:
position_ids = paddle.to_tensor(one["position_ids"],
dtype="int64").unsqueeze([0])
else:
position_ids = None
result = dict(
input_ids=input_ids,
image_type_ids=image_type_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
grid_thw=grid_thw,
images=images,
)
return result
@paddle.no_grad()
def extract_vision_features(self, inputs: list[paddle.Tensor]) -> paddle.Tensor:
"""extract_vision_features"""
assert inputs["images"] is not None
grid_thw = inputs["grid_thw"]
images = inputs["images"].cast("float32")
images = self.image_preprocess.rescale_factor * images - self.image_preprocess.image_mean_tensor
images = images / self.image_preprocess.image_std_tensor
images = images.cast("bfloat16")
token_type_ids = inputs["token_type_ids"]
token_type_ids_w_video = token_type_ids
input_ids = inputs["input_ids"]
# convert to img patch id
# TODO(lulinjun): may need to check model_config and model_cfg
image_mask = input_ids == self.model_config.im_patch_id
image_type_ids = inputs["image_type_ids"]
with paddle.amp.auto_cast(
True,
custom_black_list=self.amp_black,
custom_white_list=self.amp_white,
level="O2",
dtype=self.parallel_config.dtype,
):
image_features = self.model.vision_model.extract_feature(
images, grid_thw)
if self.parallel_config.tensor_parallel_size > 1:
S, C = image_features.shape
image_features = image_features.reshape(
[-1, C * self.model_config.spatial_conv_size**2])
image_features = ScatterOp.apply(image_features,
axis=-1) # mp 切 Fea
image_features = image_features.reshape([S, -1])
image_features = self.model.resampler_model(
image_features,
image_mask,
token_type_ids_w_video,
image_type_ids,
grid_thw,
)
return image_features
@paddle.no_grad()
def prepare_rope3d(self, position_ids: paddle.Tensor, max_len: int) -> paddle.Tensor:
"""prepare_rope3d"""
prefix_max_position_ids = paddle.max(position_ids) + 1
dec_pos_ids = paddle.tile(
paddle.arange(max_len,
dtype="int64").unsqueeze(0).unsqueeze(-1), [1, 1, 3])
dec_pos_ids = dec_pos_ids + prefix_max_position_ids
position_ids_3d_real = paddle.concat([position_ids, dec_pos_ids],
axis=1)
rope_emb = get_rope_3d(
position_ids=position_ids_3d_real,
rotary_dim=self.model_config.head_dim,
paritial_rotary_factor=1.0,
base=self.model_config.rope_theta,
max_position=self.parallel_config.max_model_len,
freq_allocation=self.model_config.freq_allocation,
)
return rope_emb