mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[Benchmark] Update the hardware monitoring method through Monitor class (#808)
* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -113,27 +113,109 @@ def build_option(args):
|
|||||||
return option
|
return option
|
||||||
|
|
||||||
|
|
||||||
def get_current_memory_mb(gpu_id=None):
|
class StatBase(object):
|
||||||
import pynvml
|
"""StatBase"""
|
||||||
import psutil
|
nvidia_smi_path = "nvidia-smi"
|
||||||
pid = os.getpid()
|
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
||||||
p = psutil.Process(pid)
|
'memory.free', 'memory.used', 'utilization.gpu',
|
||||||
info = p.memory_full_info()
|
'utilization.memory')
|
||||||
cpu_mem = info.uss / 1024. / 1024.
|
nu_opt = ',nounits'
|
||||||
gpu_mem = 0
|
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
||||||
if gpu_id is not None:
|
|
||||||
pynvml.nvmlInit()
|
|
||||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
|
||||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
|
||||||
gpu_mem = meminfo.used / 1024. / 1024.
|
|
||||||
return cpu_mem, gpu_mem
|
|
||||||
|
|
||||||
|
|
||||||
def get_current_gputil(gpu_id):
|
class Monitor(StatBase):
|
||||||
import GPUtil
|
"""Monitor"""
|
||||||
GPUs = GPUtil.getGPUs()
|
|
||||||
gpu_load = GPUs[gpu_id].load
|
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
||||||
return gpu_load
|
self.result = {}
|
||||||
|
self.gpu_id = gpu_id
|
||||||
|
self.use_gpu = use_gpu
|
||||||
|
self.interval = interval
|
||||||
|
self.cpu_stat_q = multiprocessing.Queue()
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
||||||
|
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
||||||
|
StatBase.nu_opt)
|
||||||
|
if self.use_gpu:
|
||||||
|
self.gpu_stat_worker = subprocess.Popen(
|
||||||
|
cmd,
|
||||||
|
stderr=subprocess.STDOUT,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
shell=True,
|
||||||
|
close_fds=True,
|
||||||
|
preexec_fn=os.setsid)
|
||||||
|
# cpu stat
|
||||||
|
pid = os.getpid()
|
||||||
|
self.cpu_stat_worker = multiprocessing.Process(
|
||||||
|
target=self.cpu_stat_func,
|
||||||
|
args=(self.cpu_stat_q, pid, self.interval))
|
||||||
|
self.cpu_stat_worker.start()
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
try:
|
||||||
|
if self.use_gpu:
|
||||||
|
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
||||||
|
# os.killpg(p.pid, signal.SIGTERM)
|
||||||
|
self.cpu_stat_worker.terminate()
|
||||||
|
self.cpu_stat_worker.join(timeout=0.01)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
return
|
||||||
|
|
||||||
|
# gpu
|
||||||
|
if self.use_gpu:
|
||||||
|
lines = self.gpu_stat_worker.stdout.readlines()
|
||||||
|
lines = [
|
||||||
|
line.strip().decode("utf-8") for line in lines
|
||||||
|
if line.strip() != ''
|
||||||
|
]
|
||||||
|
gpu_info_list = [{
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
||||||
|
} for line in lines]
|
||||||
|
if len(gpu_info_list) == 0:
|
||||||
|
return
|
||||||
|
result = gpu_info_list[0]
|
||||||
|
for item in gpu_info_list:
|
||||||
|
for k in item.keys():
|
||||||
|
if k not in ["name", "uuid", "timestamp"]:
|
||||||
|
result[k] = max(int(result[k]), int(item[k]))
|
||||||
|
else:
|
||||||
|
result[k] = max(result[k], item[k])
|
||||||
|
self.result['gpu'] = result
|
||||||
|
|
||||||
|
# cpu
|
||||||
|
cpu_result = {}
|
||||||
|
if self.cpu_stat_q.qsize() > 0:
|
||||||
|
cpu_result = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
while not self.cpu_stat_q.empty():
|
||||||
|
item = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
for k in StatBase.cpu_keys:
|
||||||
|
cpu_result[k] = max(cpu_result[k], item[k])
|
||||||
|
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
||||||
|
self.result['cpu'] = cpu_result
|
||||||
|
|
||||||
|
def output(self):
|
||||||
|
return self.result
|
||||||
|
|
||||||
|
def cpu_stat_func(self, q, pid, interval=0.0):
|
||||||
|
"""cpu stat function"""
|
||||||
|
stat_info = psutil.Process(pid)
|
||||||
|
while True:
|
||||||
|
# pid = os.getpid()
|
||||||
|
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
||||||
|
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
||||||
|
1024.0 / 1024.0, 4)
|
||||||
|
q.put([cpu_util, mem_util, mem_use])
|
||||||
|
time.sleep(interval)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@@ -146,6 +228,7 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
gpu_id = args.device_id
|
gpu_id = args.device_id
|
||||||
enable_collect_memory_info = args.enable_collect_memory_info
|
enable_collect_memory_info = args.enable_collect_memory_info
|
||||||
|
dump_result = dict()
|
||||||
end2end_statis = list()
|
end2end_statis = list()
|
||||||
cpu_mem = list()
|
cpu_mem = list()
|
||||||
gpu_mem = list()
|
gpu_mem = list()
|
||||||
@@ -165,6 +248,16 @@ if __name__ == '__main__':
|
|||||||
try:
|
try:
|
||||||
model = fd.vision.classification.PaddleClasModel(
|
model = fd.vision.classification.PaddleClasModel(
|
||||||
model_file, params_file, config_file, runtime_option=option)
|
model_file, params_file, config_file, runtime_option=option)
|
||||||
|
if enable_collect_memory_info:
|
||||||
|
import multiprocessing
|
||||||
|
import subprocess
|
||||||
|
import psutil
|
||||||
|
import signal
|
||||||
|
import cpuinfo
|
||||||
|
enable_gpu = args.device == "gpu"
|
||||||
|
monitor = Monitor(enable_gpu, gpu_id)
|
||||||
|
monitor.start()
|
||||||
|
|
||||||
model.enable_record_time_of_runtime()
|
model.enable_record_time_of_runtime()
|
||||||
im_ori = cv2.imread(args.image)
|
im_ori = cv2.imread(args.image)
|
||||||
for i in range(args.iter_num):
|
for i in range(args.iter_num):
|
||||||
@@ -172,31 +265,28 @@ if __name__ == '__main__':
|
|||||||
start = time.time()
|
start = time.time()
|
||||||
result = model.predict(im)
|
result = model.predict(im)
|
||||||
end2end_statis.append(time.time() - start)
|
end2end_statis.append(time.time() - start)
|
||||||
if enable_collect_memory_info:
|
|
||||||
gpu_util.append(get_current_gputil(gpu_id))
|
|
||||||
cm, gm = get_current_memory_mb(gpu_id)
|
|
||||||
cpu_mem.append(cm)
|
|
||||||
gpu_mem.append(gm)
|
|
||||||
|
|
||||||
runtime_statis = model.print_statis_info_of_runtime()
|
runtime_statis = model.print_statis_info_of_runtime()
|
||||||
|
|
||||||
warmup_iter = args.iter_num // 5
|
warmup_iter = args.iter_num // 5
|
||||||
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
cpu_mem_repeat = cpu_mem[warmup_iter:]
|
monitor.stop()
|
||||||
gpu_mem_repeat = gpu_mem[warmup_iter:]
|
mem_info = monitor.output()
|
||||||
gpu_util_repeat = gpu_util[warmup_iter:]
|
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
||||||
|
'memory.used'] if 'cpu' in mem_info else 0
|
||||||
|
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
||||||
|
'memory.used'] if 'gpu' in mem_info else 0
|
||||||
|
dump_result["gpu_util"] = mem_info['gpu'][
|
||||||
|
'utilization.gpu'] if 'gpu' in mem_info else 0
|
||||||
|
|
||||||
dump_result = dict()
|
|
||||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||||
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
||||||
if enable_collect_memory_info:
|
|
||||||
dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat)
|
|
||||||
dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat)
|
|
||||||
dump_result["gpu_util"] = np.mean(gpu_util_repeat)
|
|
||||||
|
|
||||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
|
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
|
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
f.writelines("cpu_rss_mb: {} \n".format(
|
f.writelines("cpu_rss_mb: {} \n".format(
|
||||||
str(dump_result["cpu_rss_mb"])))
|
str(dump_result["cpu_rss_mb"])))
|
||||||
@@ -204,6 +294,9 @@ if __name__ == '__main__':
|
|||||||
str(dump_result["gpu_rss_mb"])))
|
str(dump_result["gpu_rss_mb"])))
|
||||||
f.writelines("gpu_util: {} \n".format(
|
f.writelines("gpu_util: {} \n".format(
|
||||||
str(dump_result["gpu_util"])))
|
str(dump_result["gpu_util"])))
|
||||||
|
print("cpu_rss_mb: {} \n".format(str(dump_result["cpu_rss_mb"])))
|
||||||
|
print("gpu_rss_mb: {} \n".format(str(dump_result["gpu_rss_mb"])))
|
||||||
|
print("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||||
except:
|
except:
|
||||||
f.writelines("!!!!!Infer Failed\n")
|
f.writelines("!!!!!Infer Failed\n")
|
||||||
|
|
||||||
|
@@ -119,27 +119,109 @@ def build_option(args):
|
|||||||
return option
|
return option
|
||||||
|
|
||||||
|
|
||||||
def get_current_memory_mb(gpu_id=None):
|
class StatBase(object):
|
||||||
import pynvml
|
"""StatBase"""
|
||||||
import psutil
|
nvidia_smi_path = "nvidia-smi"
|
||||||
pid = os.getpid()
|
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
||||||
p = psutil.Process(pid)
|
'memory.free', 'memory.used', 'utilization.gpu',
|
||||||
info = p.memory_full_info()
|
'utilization.memory')
|
||||||
cpu_mem = info.uss / 1024. / 1024.
|
nu_opt = ',nounits'
|
||||||
gpu_mem = 0
|
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
||||||
if gpu_id is not None:
|
|
||||||
pynvml.nvmlInit()
|
|
||||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
|
||||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
|
||||||
gpu_mem = meminfo.used / 1024. / 1024.
|
|
||||||
return cpu_mem, gpu_mem
|
|
||||||
|
|
||||||
|
|
||||||
def get_current_gputil(gpu_id):
|
class Monitor(StatBase):
|
||||||
import GPUtil
|
"""Monitor"""
|
||||||
GPUs = GPUtil.getGPUs()
|
|
||||||
gpu_load = GPUs[gpu_id].load
|
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
||||||
return gpu_load
|
self.result = {}
|
||||||
|
self.gpu_id = gpu_id
|
||||||
|
self.use_gpu = use_gpu
|
||||||
|
self.interval = interval
|
||||||
|
self.cpu_stat_q = multiprocessing.Queue()
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
||||||
|
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
||||||
|
StatBase.nu_opt)
|
||||||
|
if self.use_gpu:
|
||||||
|
self.gpu_stat_worker = subprocess.Popen(
|
||||||
|
cmd,
|
||||||
|
stderr=subprocess.STDOUT,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
shell=True,
|
||||||
|
close_fds=True,
|
||||||
|
preexec_fn=os.setsid)
|
||||||
|
# cpu stat
|
||||||
|
pid = os.getpid()
|
||||||
|
self.cpu_stat_worker = multiprocessing.Process(
|
||||||
|
target=self.cpu_stat_func,
|
||||||
|
args=(self.cpu_stat_q, pid, self.interval))
|
||||||
|
self.cpu_stat_worker.start()
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
try:
|
||||||
|
if self.use_gpu:
|
||||||
|
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
||||||
|
# os.killpg(p.pid, signal.SIGTERM)
|
||||||
|
self.cpu_stat_worker.terminate()
|
||||||
|
self.cpu_stat_worker.join(timeout=0.01)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
return
|
||||||
|
|
||||||
|
# gpu
|
||||||
|
if self.use_gpu:
|
||||||
|
lines = self.gpu_stat_worker.stdout.readlines()
|
||||||
|
lines = [
|
||||||
|
line.strip().decode("utf-8") for line in lines
|
||||||
|
if line.strip() != ''
|
||||||
|
]
|
||||||
|
gpu_info_list = [{
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
||||||
|
} for line in lines]
|
||||||
|
if len(gpu_info_list) == 0:
|
||||||
|
return
|
||||||
|
result = gpu_info_list[0]
|
||||||
|
for item in gpu_info_list:
|
||||||
|
for k in item.keys():
|
||||||
|
if k not in ["name", "uuid", "timestamp"]:
|
||||||
|
result[k] = max(int(result[k]), int(item[k]))
|
||||||
|
else:
|
||||||
|
result[k] = max(result[k], item[k])
|
||||||
|
self.result['gpu'] = result
|
||||||
|
|
||||||
|
# cpu
|
||||||
|
cpu_result = {}
|
||||||
|
if self.cpu_stat_q.qsize() > 0:
|
||||||
|
cpu_result = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
while not self.cpu_stat_q.empty():
|
||||||
|
item = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
for k in StatBase.cpu_keys:
|
||||||
|
cpu_result[k] = max(cpu_result[k], item[k])
|
||||||
|
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
||||||
|
self.result['cpu'] = cpu_result
|
||||||
|
|
||||||
|
def output(self):
|
||||||
|
return self.result
|
||||||
|
|
||||||
|
def cpu_stat_func(self, q, pid, interval=0.0):
|
||||||
|
"""cpu stat function"""
|
||||||
|
stat_info = psutil.Process(pid)
|
||||||
|
while True:
|
||||||
|
# pid = os.getpid()
|
||||||
|
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
||||||
|
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
||||||
|
1024.0 / 1024.0, 4)
|
||||||
|
q.put([cpu_util, mem_util, mem_use])
|
||||||
|
time.sleep(interval)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@@ -152,6 +234,7 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
gpu_id = args.device_id
|
gpu_id = args.device_id
|
||||||
enable_collect_memory_info = args.enable_collect_memory_info
|
enable_collect_memory_info = args.enable_collect_memory_info
|
||||||
|
dump_result = dict()
|
||||||
end2end_statis = list()
|
end2end_statis = list()
|
||||||
cpu_mem = list()
|
cpu_mem = list()
|
||||||
gpu_mem = list()
|
gpu_mem = list()
|
||||||
@@ -189,6 +272,16 @@ if __name__ == '__main__':
|
|||||||
else:
|
else:
|
||||||
raise Exception("model {} not support now in ppdet series".format(
|
raise Exception("model {} not support now in ppdet series".format(
|
||||||
args.model))
|
args.model))
|
||||||
|
if enable_collect_memory_info:
|
||||||
|
import multiprocessing
|
||||||
|
import subprocess
|
||||||
|
import psutil
|
||||||
|
import signal
|
||||||
|
import cpuinfo
|
||||||
|
enable_gpu = args.device == "gpu"
|
||||||
|
monitor = Monitor(enable_gpu, gpu_id)
|
||||||
|
monitor.start()
|
||||||
|
|
||||||
model.enable_record_time_of_runtime()
|
model.enable_record_time_of_runtime()
|
||||||
im_ori = cv2.imread(args.image)
|
im_ori = cv2.imread(args.image)
|
||||||
for i in range(args.iter_num):
|
for i in range(args.iter_num):
|
||||||
@@ -196,31 +289,28 @@ if __name__ == '__main__':
|
|||||||
start = time.time()
|
start = time.time()
|
||||||
result = model.predict(im)
|
result = model.predict(im)
|
||||||
end2end_statis.append(time.time() - start)
|
end2end_statis.append(time.time() - start)
|
||||||
if enable_collect_memory_info:
|
|
||||||
gpu_util.append(get_current_gputil(gpu_id))
|
|
||||||
cm, gm = get_current_memory_mb(gpu_id)
|
|
||||||
cpu_mem.append(cm)
|
|
||||||
gpu_mem.append(gm)
|
|
||||||
|
|
||||||
runtime_statis = model.print_statis_info_of_runtime()
|
runtime_statis = model.print_statis_info_of_runtime()
|
||||||
|
|
||||||
warmup_iter = args.iter_num // 5
|
warmup_iter = args.iter_num // 5
|
||||||
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
cpu_mem_repeat = cpu_mem[warmup_iter:]
|
monitor.stop()
|
||||||
gpu_mem_repeat = gpu_mem[warmup_iter:]
|
mem_info = monitor.output()
|
||||||
gpu_util_repeat = gpu_util[warmup_iter:]
|
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
||||||
|
'memory.used'] if 'cpu' in mem_info else 0
|
||||||
|
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
||||||
|
'memory.used'] if 'gpu' in mem_info else 0
|
||||||
|
dump_result["gpu_util"] = mem_info['gpu'][
|
||||||
|
'utilization.gpu'] if 'gpu' in mem_info else 0
|
||||||
|
|
||||||
dump_result = dict()
|
|
||||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||||
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
||||||
if enable_collect_memory_info:
|
|
||||||
dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat)
|
|
||||||
dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat)
|
|
||||||
dump_result["gpu_util"] = np.mean(gpu_util_repeat)
|
|
||||||
|
|
||||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
|
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
|
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
f.writelines("cpu_rss_mb: {} \n".format(
|
f.writelines("cpu_rss_mb: {} \n".format(
|
||||||
str(dump_result["cpu_rss_mb"])))
|
str(dump_result["cpu_rss_mb"])))
|
||||||
@@ -228,6 +318,9 @@ if __name__ == '__main__':
|
|||||||
str(dump_result["gpu_rss_mb"])))
|
str(dump_result["gpu_rss_mb"])))
|
||||||
f.writelines("gpu_util: {} \n".format(
|
f.writelines("gpu_util: {} \n".format(
|
||||||
str(dump_result["gpu_util"])))
|
str(dump_result["gpu_util"])))
|
||||||
|
print("cpu_rss_mb: {} \n".format(str(dump_result["cpu_rss_mb"])))
|
||||||
|
print("gpu_rss_mb: {} \n".format(str(dump_result["gpu_rss_mb"])))
|
||||||
|
print("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||||
except:
|
except:
|
||||||
f.writelines("!!!!!Infer Failed\n")
|
f.writelines("!!!!!Infer Failed\n")
|
||||||
|
|
||||||
|
@@ -122,27 +122,109 @@ def build_option(args):
|
|||||||
return option
|
return option
|
||||||
|
|
||||||
|
|
||||||
def get_current_memory_mb(gpu_id=None):
|
class StatBase(object):
|
||||||
import pynvml
|
"""StatBase"""
|
||||||
import psutil
|
nvidia_smi_path = "nvidia-smi"
|
||||||
pid = os.getpid()
|
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
||||||
p = psutil.Process(pid)
|
'memory.free', 'memory.used', 'utilization.gpu',
|
||||||
info = p.memory_full_info()
|
'utilization.memory')
|
||||||
cpu_mem = info.uss / 1024. / 1024.
|
nu_opt = ',nounits'
|
||||||
gpu_mem = 0
|
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
||||||
if gpu_id is not None:
|
|
||||||
pynvml.nvmlInit()
|
|
||||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
|
||||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
|
||||||
gpu_mem = meminfo.used / 1024. / 1024.
|
|
||||||
return cpu_mem, gpu_mem
|
|
||||||
|
|
||||||
|
|
||||||
def get_current_gputil(gpu_id):
|
class Monitor(StatBase):
|
||||||
import GPUtil
|
"""Monitor"""
|
||||||
GPUs = GPUtil.getGPUs()
|
|
||||||
gpu_load = GPUs[gpu_id].load
|
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
||||||
return gpu_load
|
self.result = {}
|
||||||
|
self.gpu_id = gpu_id
|
||||||
|
self.use_gpu = use_gpu
|
||||||
|
self.interval = interval
|
||||||
|
self.cpu_stat_q = multiprocessing.Queue()
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
||||||
|
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
||||||
|
StatBase.nu_opt)
|
||||||
|
if self.use_gpu:
|
||||||
|
self.gpu_stat_worker = subprocess.Popen(
|
||||||
|
cmd,
|
||||||
|
stderr=subprocess.STDOUT,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
shell=True,
|
||||||
|
close_fds=True,
|
||||||
|
preexec_fn=os.setsid)
|
||||||
|
# cpu stat
|
||||||
|
pid = os.getpid()
|
||||||
|
self.cpu_stat_worker = multiprocessing.Process(
|
||||||
|
target=self.cpu_stat_func,
|
||||||
|
args=(self.cpu_stat_q, pid, self.interval))
|
||||||
|
self.cpu_stat_worker.start()
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
try:
|
||||||
|
if self.use_gpu:
|
||||||
|
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
||||||
|
# os.killpg(p.pid, signal.SIGTERM)
|
||||||
|
self.cpu_stat_worker.terminate()
|
||||||
|
self.cpu_stat_worker.join(timeout=0.01)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
return
|
||||||
|
|
||||||
|
# gpu
|
||||||
|
if self.use_gpu:
|
||||||
|
lines = self.gpu_stat_worker.stdout.readlines()
|
||||||
|
lines = [
|
||||||
|
line.strip().decode("utf-8") for line in lines
|
||||||
|
if line.strip() != ''
|
||||||
|
]
|
||||||
|
gpu_info_list = [{
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
||||||
|
} for line in lines]
|
||||||
|
if len(gpu_info_list) == 0:
|
||||||
|
return
|
||||||
|
result = gpu_info_list[0]
|
||||||
|
for item in gpu_info_list:
|
||||||
|
for k in item.keys():
|
||||||
|
if k not in ["name", "uuid", "timestamp"]:
|
||||||
|
result[k] = max(int(result[k]), int(item[k]))
|
||||||
|
else:
|
||||||
|
result[k] = max(result[k], item[k])
|
||||||
|
self.result['gpu'] = result
|
||||||
|
|
||||||
|
# cpu
|
||||||
|
cpu_result = {}
|
||||||
|
if self.cpu_stat_q.qsize() > 0:
|
||||||
|
cpu_result = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
while not self.cpu_stat_q.empty():
|
||||||
|
item = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
for k in StatBase.cpu_keys:
|
||||||
|
cpu_result[k] = max(cpu_result[k], item[k])
|
||||||
|
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
||||||
|
self.result['cpu'] = cpu_result
|
||||||
|
|
||||||
|
def output(self):
|
||||||
|
return self.result
|
||||||
|
|
||||||
|
def cpu_stat_func(self, q, pid, interval=0.0):
|
||||||
|
"""cpu stat function"""
|
||||||
|
stat_info = psutil.Process(pid)
|
||||||
|
while True:
|
||||||
|
# pid = os.getpid()
|
||||||
|
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
||||||
|
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
||||||
|
1024.0 / 1024.0, 4)
|
||||||
|
q.put([cpu_util, mem_util, mem_use])
|
||||||
|
time.sleep(interval)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@@ -168,6 +250,7 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
gpu_id = args.device_id
|
gpu_id = args.device_id
|
||||||
enable_collect_memory_info = args.enable_collect_memory_info
|
enable_collect_memory_info = args.enable_collect_memory_info
|
||||||
|
dump_result = dict()
|
||||||
end2end_statis = list()
|
end2end_statis = list()
|
||||||
cpu_mem = list()
|
cpu_mem = list()
|
||||||
gpu_mem = list()
|
gpu_mem = list()
|
||||||
@@ -233,6 +316,16 @@ if __name__ == '__main__':
|
|||||||
else:
|
else:
|
||||||
raise Exception("model {} not support now in ppocr series".format(
|
raise Exception("model {} not support now in ppocr series".format(
|
||||||
args.model_dir))
|
args.model_dir))
|
||||||
|
if enable_collect_memory_info:
|
||||||
|
import multiprocessing
|
||||||
|
import subprocess
|
||||||
|
import psutil
|
||||||
|
import signal
|
||||||
|
import cpuinfo
|
||||||
|
enable_gpu = args.device == "gpu"
|
||||||
|
monitor = Monitor(enable_gpu, gpu_id)
|
||||||
|
monitor.start()
|
||||||
|
|
||||||
det_model.enable_record_time_of_runtime()
|
det_model.enable_record_time_of_runtime()
|
||||||
cls_model.enable_record_time_of_runtime()
|
cls_model.enable_record_time_of_runtime()
|
||||||
rec_model.enable_record_time_of_runtime()
|
rec_model.enable_record_time_of_runtime()
|
||||||
@@ -242,11 +335,6 @@ if __name__ == '__main__':
|
|||||||
start = time.time()
|
start = time.time()
|
||||||
result = model.predict(im)
|
result = model.predict(im)
|
||||||
end2end_statis.append(time.time() - start)
|
end2end_statis.append(time.time() - start)
|
||||||
if enable_collect_memory_info:
|
|
||||||
gpu_util.append(get_current_gputil(gpu_id))
|
|
||||||
cm, gm = get_current_memory_mb(gpu_id)
|
|
||||||
cpu_mem.append(cm)
|
|
||||||
gpu_mem.append(gm)
|
|
||||||
|
|
||||||
runtime_statis_det = det_model.print_statis_info_of_runtime()
|
runtime_statis_det = det_model.print_statis_info_of_runtime()
|
||||||
runtime_statis_cls = cls_model.print_statis_info_of_runtime()
|
runtime_statis_cls = cls_model.print_statis_info_of_runtime()
|
||||||
@@ -255,22 +343,24 @@ if __name__ == '__main__':
|
|||||||
warmup_iter = args.iter_num // 5
|
warmup_iter = args.iter_num // 5
|
||||||
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
cpu_mem_repeat = cpu_mem[warmup_iter:]
|
monitor.stop()
|
||||||
gpu_mem_repeat = gpu_mem[warmup_iter:]
|
mem_info = monitor.output()
|
||||||
gpu_util_repeat = gpu_util[warmup_iter:]
|
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
||||||
|
'memory.used'] if 'cpu' in mem_info else 0
|
||||||
|
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
||||||
|
'memory.used'] if 'gpu' in mem_info else 0
|
||||||
|
dump_result["gpu_util"] = mem_info['gpu'][
|
||||||
|
'utilization.gpu'] if 'gpu' in mem_info else 0
|
||||||
|
|
||||||
dump_result = dict()
|
|
||||||
dump_result["runtime"] = (
|
dump_result["runtime"] = (
|
||||||
runtime_statis_det["avg_time"] + runtime_statis_cls["avg_time"] +
|
runtime_statis_det["avg_time"] + runtime_statis_cls["avg_time"] +
|
||||||
runtime_statis_rec["avg_time"]) * 1000
|
runtime_statis_rec["avg_time"]) * 1000
|
||||||
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
||||||
if enable_collect_memory_info:
|
|
||||||
dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat)
|
|
||||||
dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat)
|
|
||||||
dump_result["gpu_util"] = np.mean(gpu_util_repeat)
|
|
||||||
|
|
||||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
|
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
|
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
f.writelines("cpu_rss_mb: {} \n".format(
|
f.writelines("cpu_rss_mb: {} \n".format(
|
||||||
str(dump_result["cpu_rss_mb"])))
|
str(dump_result["cpu_rss_mb"])))
|
||||||
@@ -278,6 +368,9 @@ if __name__ == '__main__':
|
|||||||
str(dump_result["gpu_rss_mb"])))
|
str(dump_result["gpu_rss_mb"])))
|
||||||
f.writelines("gpu_util: {} \n".format(
|
f.writelines("gpu_util: {} \n".format(
|
||||||
str(dump_result["gpu_util"])))
|
str(dump_result["gpu_util"])))
|
||||||
|
print("cpu_rss_mb: {} \n".format(str(dump_result["cpu_rss_mb"])))
|
||||||
|
print("gpu_rss_mb: {} \n".format(str(dump_result["gpu_rss_mb"])))
|
||||||
|
print("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||||
except:
|
except:
|
||||||
f.writelines("!!!!!Infer Failed\n")
|
f.writelines("!!!!!Infer Failed\n")
|
||||||
|
|
||||||
|
@@ -113,27 +113,109 @@ def build_option(args):
|
|||||||
return option
|
return option
|
||||||
|
|
||||||
|
|
||||||
def get_current_memory_mb(gpu_id=None):
|
class StatBase(object):
|
||||||
import pynvml
|
"""StatBase"""
|
||||||
import psutil
|
nvidia_smi_path = "nvidia-smi"
|
||||||
pid = os.getpid()
|
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
||||||
p = psutil.Process(pid)
|
'memory.free', 'memory.used', 'utilization.gpu',
|
||||||
info = p.memory_full_info()
|
'utilization.memory')
|
||||||
cpu_mem = info.uss / 1024. / 1024.
|
nu_opt = ',nounits'
|
||||||
gpu_mem = 0
|
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
||||||
if gpu_id is not None:
|
|
||||||
pynvml.nvmlInit()
|
|
||||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
|
||||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
|
||||||
gpu_mem = meminfo.used / 1024. / 1024.
|
|
||||||
return cpu_mem, gpu_mem
|
|
||||||
|
|
||||||
|
|
||||||
def get_current_gputil(gpu_id):
|
class Monitor(StatBase):
|
||||||
import GPUtil
|
"""Monitor"""
|
||||||
GPUs = GPUtil.getGPUs()
|
|
||||||
gpu_load = GPUs[gpu_id].load
|
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
||||||
return gpu_load
|
self.result = {}
|
||||||
|
self.gpu_id = gpu_id
|
||||||
|
self.use_gpu = use_gpu
|
||||||
|
self.interval = interval
|
||||||
|
self.cpu_stat_q = multiprocessing.Queue()
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
||||||
|
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
||||||
|
StatBase.nu_opt)
|
||||||
|
if self.use_gpu:
|
||||||
|
self.gpu_stat_worker = subprocess.Popen(
|
||||||
|
cmd,
|
||||||
|
stderr=subprocess.STDOUT,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
shell=True,
|
||||||
|
close_fds=True,
|
||||||
|
preexec_fn=os.setsid)
|
||||||
|
# cpu stat
|
||||||
|
pid = os.getpid()
|
||||||
|
self.cpu_stat_worker = multiprocessing.Process(
|
||||||
|
target=self.cpu_stat_func,
|
||||||
|
args=(self.cpu_stat_q, pid, self.interval))
|
||||||
|
self.cpu_stat_worker.start()
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
try:
|
||||||
|
if self.use_gpu:
|
||||||
|
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
||||||
|
# os.killpg(p.pid, signal.SIGTERM)
|
||||||
|
self.cpu_stat_worker.terminate()
|
||||||
|
self.cpu_stat_worker.join(timeout=0.01)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
return
|
||||||
|
|
||||||
|
# gpu
|
||||||
|
if self.use_gpu:
|
||||||
|
lines = self.gpu_stat_worker.stdout.readlines()
|
||||||
|
lines = [
|
||||||
|
line.strip().decode("utf-8") for line in lines
|
||||||
|
if line.strip() != ''
|
||||||
|
]
|
||||||
|
gpu_info_list = [{
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
||||||
|
} for line in lines]
|
||||||
|
if len(gpu_info_list) == 0:
|
||||||
|
return
|
||||||
|
result = gpu_info_list[0]
|
||||||
|
for item in gpu_info_list:
|
||||||
|
for k in item.keys():
|
||||||
|
if k not in ["name", "uuid", "timestamp"]:
|
||||||
|
result[k] = max(int(result[k]), int(item[k]))
|
||||||
|
else:
|
||||||
|
result[k] = max(result[k], item[k])
|
||||||
|
self.result['gpu'] = result
|
||||||
|
|
||||||
|
# cpu
|
||||||
|
cpu_result = {}
|
||||||
|
if self.cpu_stat_q.qsize() > 0:
|
||||||
|
cpu_result = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
while not self.cpu_stat_q.empty():
|
||||||
|
item = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
for k in StatBase.cpu_keys:
|
||||||
|
cpu_result[k] = max(cpu_result[k], item[k])
|
||||||
|
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
||||||
|
self.result['cpu'] = cpu_result
|
||||||
|
|
||||||
|
def output(self):
|
||||||
|
return self.result
|
||||||
|
|
||||||
|
def cpu_stat_func(self, q, pid, interval=0.0):
|
||||||
|
"""cpu stat function"""
|
||||||
|
stat_info = psutil.Process(pid)
|
||||||
|
while True:
|
||||||
|
# pid = os.getpid()
|
||||||
|
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
||||||
|
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
||||||
|
1024.0 / 1024.0, 4)
|
||||||
|
q.put([cpu_util, mem_util, mem_use])
|
||||||
|
time.sleep(interval)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@@ -146,6 +228,7 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
gpu_id = args.device_id
|
gpu_id = args.device_id
|
||||||
enable_collect_memory_info = args.enable_collect_memory_info
|
enable_collect_memory_info = args.enable_collect_memory_info
|
||||||
|
dump_result = dict()
|
||||||
end2end_statis = list()
|
end2end_statis = list()
|
||||||
cpu_mem = list()
|
cpu_mem = list()
|
||||||
gpu_mem = list()
|
gpu_mem = list()
|
||||||
@@ -164,6 +247,16 @@ if __name__ == '__main__':
|
|||||||
try:
|
try:
|
||||||
model = fd.vision.segmentation.PaddleSegModel(
|
model = fd.vision.segmentation.PaddleSegModel(
|
||||||
model_file, params_file, config_file, runtime_option=option)
|
model_file, params_file, config_file, runtime_option=option)
|
||||||
|
if enable_collect_memory_info:
|
||||||
|
import multiprocessing
|
||||||
|
import subprocess
|
||||||
|
import psutil
|
||||||
|
import signal
|
||||||
|
import cpuinfo
|
||||||
|
enable_gpu = args.device == "gpu"
|
||||||
|
monitor = Monitor(enable_gpu, gpu_id)
|
||||||
|
monitor.start()
|
||||||
|
|
||||||
model.enable_record_time_of_runtime()
|
model.enable_record_time_of_runtime()
|
||||||
im_ori = cv2.imread(args.image)
|
im_ori = cv2.imread(args.image)
|
||||||
for i in range(args.iter_num):
|
for i in range(args.iter_num):
|
||||||
@@ -171,31 +264,28 @@ if __name__ == '__main__':
|
|||||||
start = time.time()
|
start = time.time()
|
||||||
result = model.predict(im)
|
result = model.predict(im)
|
||||||
end2end_statis.append(time.time() - start)
|
end2end_statis.append(time.time() - start)
|
||||||
if enable_collect_memory_info:
|
|
||||||
gpu_util.append(get_current_gputil(gpu_id))
|
|
||||||
cm, gm = get_current_memory_mb(gpu_id)
|
|
||||||
cpu_mem.append(cm)
|
|
||||||
gpu_mem.append(gm)
|
|
||||||
|
|
||||||
runtime_statis = model.print_statis_info_of_runtime()
|
runtime_statis = model.print_statis_info_of_runtime()
|
||||||
|
|
||||||
warmup_iter = args.iter_num // 5
|
warmup_iter = args.iter_num // 5
|
||||||
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
cpu_mem_repeat = cpu_mem[warmup_iter:]
|
monitor.stop()
|
||||||
gpu_mem_repeat = gpu_mem[warmup_iter:]
|
mem_info = monitor.output()
|
||||||
gpu_util_repeat = gpu_util[warmup_iter:]
|
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
||||||
|
'memory.used'] if 'cpu' in mem_info else 0
|
||||||
|
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
||||||
|
'memory.used'] if 'gpu' in mem_info else 0
|
||||||
|
dump_result["gpu_util"] = mem_info['gpu'][
|
||||||
|
'utilization.gpu'] if 'gpu' in mem_info else 0
|
||||||
|
|
||||||
dump_result = dict()
|
|
||||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||||
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
||||||
if enable_collect_memory_info:
|
|
||||||
dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat)
|
|
||||||
dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat)
|
|
||||||
dump_result["gpu_util"] = np.mean(gpu_util_repeat)
|
|
||||||
|
|
||||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
|
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
|
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
f.writelines("cpu_rss_mb: {} \n".format(
|
f.writelines("cpu_rss_mb: {} \n".format(
|
||||||
str(dump_result["cpu_rss_mb"])))
|
str(dump_result["cpu_rss_mb"])))
|
||||||
@@ -203,6 +293,9 @@ if __name__ == '__main__':
|
|||||||
str(dump_result["gpu_rss_mb"])))
|
str(dump_result["gpu_rss_mb"])))
|
||||||
f.writelines("gpu_util: {} \n".format(
|
f.writelines("gpu_util: {} \n".format(
|
||||||
str(dump_result["gpu_util"])))
|
str(dump_result["gpu_util"])))
|
||||||
|
print("cpu_rss_mb: {} \n".format(str(dump_result["cpu_rss_mb"])))
|
||||||
|
print("gpu_rss_mb: {} \n".format(str(dump_result["gpu_rss_mb"])))
|
||||||
|
print("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||||
except:
|
except:
|
||||||
f.writelines("!!!!!Infer Failed\n")
|
f.writelines("!!!!!Infer Failed\n")
|
||||||
|
|
||||||
|
@@ -113,27 +113,109 @@ def build_option(args):
|
|||||||
return option
|
return option
|
||||||
|
|
||||||
|
|
||||||
def get_current_memory_mb(gpu_id=None):
|
class StatBase(object):
|
||||||
import pynvml
|
"""StatBase"""
|
||||||
import psutil
|
nvidia_smi_path = "nvidia-smi"
|
||||||
pid = os.getpid()
|
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
|
||||||
p = psutil.Process(pid)
|
'memory.free', 'memory.used', 'utilization.gpu',
|
||||||
info = p.memory_full_info()
|
'utilization.memory')
|
||||||
cpu_mem = info.uss / 1024. / 1024.
|
nu_opt = ',nounits'
|
||||||
gpu_mem = 0
|
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
|
||||||
if gpu_id is not None:
|
|
||||||
pynvml.nvmlInit()
|
|
||||||
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
|
||||||
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
|
|
||||||
gpu_mem = meminfo.used / 1024. / 1024.
|
|
||||||
return cpu_mem, gpu_mem
|
|
||||||
|
|
||||||
|
|
||||||
def get_current_gputil(gpu_id):
|
class Monitor(StatBase):
|
||||||
import GPUtil
|
"""Monitor"""
|
||||||
GPUs = GPUtil.getGPUs()
|
|
||||||
gpu_load = GPUs[gpu_id].load
|
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
|
||||||
return gpu_load
|
self.result = {}
|
||||||
|
self.gpu_id = gpu_id
|
||||||
|
self.use_gpu = use_gpu
|
||||||
|
self.interval = interval
|
||||||
|
self.cpu_stat_q = multiprocessing.Queue()
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
|
||||||
|
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
|
||||||
|
StatBase.nu_opt)
|
||||||
|
if self.use_gpu:
|
||||||
|
self.gpu_stat_worker = subprocess.Popen(
|
||||||
|
cmd,
|
||||||
|
stderr=subprocess.STDOUT,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
shell=True,
|
||||||
|
close_fds=True,
|
||||||
|
preexec_fn=os.setsid)
|
||||||
|
# cpu stat
|
||||||
|
pid = os.getpid()
|
||||||
|
self.cpu_stat_worker = multiprocessing.Process(
|
||||||
|
target=self.cpu_stat_func,
|
||||||
|
args=(self.cpu_stat_q, pid, self.interval))
|
||||||
|
self.cpu_stat_worker.start()
|
||||||
|
|
||||||
|
def stop(self):
|
||||||
|
try:
|
||||||
|
if self.use_gpu:
|
||||||
|
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
|
||||||
|
# os.killpg(p.pid, signal.SIGTERM)
|
||||||
|
self.cpu_stat_worker.terminate()
|
||||||
|
self.cpu_stat_worker.join(timeout=0.01)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
return
|
||||||
|
|
||||||
|
# gpu
|
||||||
|
if self.use_gpu:
|
||||||
|
lines = self.gpu_stat_worker.stdout.readlines()
|
||||||
|
lines = [
|
||||||
|
line.strip().decode("utf-8") for line in lines
|
||||||
|
if line.strip() != ''
|
||||||
|
]
|
||||||
|
gpu_info_list = [{
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.gpu_keys, line.split(', '))
|
||||||
|
} for line in lines]
|
||||||
|
if len(gpu_info_list) == 0:
|
||||||
|
return
|
||||||
|
result = gpu_info_list[0]
|
||||||
|
for item in gpu_info_list:
|
||||||
|
for k in item.keys():
|
||||||
|
if k not in ["name", "uuid", "timestamp"]:
|
||||||
|
result[k] = max(int(result[k]), int(item[k]))
|
||||||
|
else:
|
||||||
|
result[k] = max(result[k], item[k])
|
||||||
|
self.result['gpu'] = result
|
||||||
|
|
||||||
|
# cpu
|
||||||
|
cpu_result = {}
|
||||||
|
if self.cpu_stat_q.qsize() > 0:
|
||||||
|
cpu_result = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
while not self.cpu_stat_q.empty():
|
||||||
|
item = {
|
||||||
|
k: v
|
||||||
|
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
|
||||||
|
}
|
||||||
|
for k in StatBase.cpu_keys:
|
||||||
|
cpu_result[k] = max(cpu_result[k], item[k])
|
||||||
|
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
|
||||||
|
self.result['cpu'] = cpu_result
|
||||||
|
|
||||||
|
def output(self):
|
||||||
|
return self.result
|
||||||
|
|
||||||
|
def cpu_stat_func(self, q, pid, interval=0.0):
|
||||||
|
"""cpu stat function"""
|
||||||
|
stat_info = psutil.Process(pid)
|
||||||
|
while True:
|
||||||
|
# pid = os.getpid()
|
||||||
|
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
|
||||||
|
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
|
||||||
|
1024.0 / 1024.0, 4)
|
||||||
|
q.put([cpu_util, mem_util, mem_use])
|
||||||
|
time.sleep(interval)
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
@@ -144,6 +226,7 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
gpu_id = args.device_id
|
gpu_id = args.device_id
|
||||||
enable_collect_memory_info = args.enable_collect_memory_info
|
enable_collect_memory_info = args.enable_collect_memory_info
|
||||||
|
dump_result = dict()
|
||||||
end2end_statis = list()
|
end2end_statis = list()
|
||||||
cpu_mem = list()
|
cpu_mem = list()
|
||||||
gpu_mem = list()
|
gpu_mem = list()
|
||||||
@@ -175,6 +258,16 @@ if __name__ == '__main__':
|
|||||||
else:
|
else:
|
||||||
raise Exception("model {} not support now in yolo series".format(
|
raise Exception("model {} not support now in yolo series".format(
|
||||||
args.model))
|
args.model))
|
||||||
|
if enable_collect_memory_info:
|
||||||
|
import multiprocessing
|
||||||
|
import subprocess
|
||||||
|
import psutil
|
||||||
|
import signal
|
||||||
|
import cpuinfo
|
||||||
|
enable_gpu = args.device == "gpu"
|
||||||
|
monitor = Monitor(enable_gpu, gpu_id)
|
||||||
|
monitor.start()
|
||||||
|
|
||||||
model.enable_record_time_of_runtime()
|
model.enable_record_time_of_runtime()
|
||||||
im_ori = cv2.imread(args.image)
|
im_ori = cv2.imread(args.image)
|
||||||
for i in range(args.iter_num):
|
for i in range(args.iter_num):
|
||||||
@@ -182,31 +275,28 @@ if __name__ == '__main__':
|
|||||||
start = time.time()
|
start = time.time()
|
||||||
result = model.predict(im)
|
result = model.predict(im)
|
||||||
end2end_statis.append(time.time() - start)
|
end2end_statis.append(time.time() - start)
|
||||||
if enable_collect_memory_info:
|
|
||||||
gpu_util.append(get_current_gputil(gpu_id))
|
|
||||||
cm, gm = get_current_memory_mb(gpu_id)
|
|
||||||
cpu_mem.append(cm)
|
|
||||||
gpu_mem.append(gm)
|
|
||||||
|
|
||||||
runtime_statis = model.print_statis_info_of_runtime()
|
runtime_statis = model.print_statis_info_of_runtime()
|
||||||
|
|
||||||
warmup_iter = args.iter_num // 5
|
warmup_iter = args.iter_num // 5
|
||||||
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
end2end_statis_repeat = end2end_statis[warmup_iter:]
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
cpu_mem_repeat = cpu_mem[warmup_iter:]
|
monitor.stop()
|
||||||
gpu_mem_repeat = gpu_mem[warmup_iter:]
|
mem_info = monitor.output()
|
||||||
gpu_util_repeat = gpu_util[warmup_iter:]
|
dump_result["cpu_rss_mb"] = mem_info['cpu'][
|
||||||
|
'memory.used'] if 'cpu' in mem_info else 0
|
||||||
|
dump_result["gpu_rss_mb"] = mem_info['gpu'][
|
||||||
|
'memory.used'] if 'gpu' in mem_info else 0
|
||||||
|
dump_result["gpu_util"] = mem_info['gpu'][
|
||||||
|
'utilization.gpu'] if 'gpu' in mem_info else 0
|
||||||
|
|
||||||
dump_result = dict()
|
|
||||||
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
|
||||||
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
|
||||||
if enable_collect_memory_info:
|
|
||||||
dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat)
|
|
||||||
dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat)
|
|
||||||
dump_result["gpu_util"] = np.mean(gpu_util_repeat)
|
|
||||||
|
|
||||||
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
|
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
|
||||||
|
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
|
||||||
if enable_collect_memory_info:
|
if enable_collect_memory_info:
|
||||||
f.writelines("cpu_rss_mb: {} \n".format(
|
f.writelines("cpu_rss_mb: {} \n".format(
|
||||||
str(dump_result["cpu_rss_mb"])))
|
str(dump_result["cpu_rss_mb"])))
|
||||||
@@ -214,6 +304,9 @@ if __name__ == '__main__':
|
|||||||
str(dump_result["gpu_rss_mb"])))
|
str(dump_result["gpu_rss_mb"])))
|
||||||
f.writelines("gpu_util: {} \n".format(
|
f.writelines("gpu_util: {} \n".format(
|
||||||
str(dump_result["gpu_util"])))
|
str(dump_result["gpu_util"])))
|
||||||
|
print("cpu_rss_mb: {} \n".format(str(dump_result["cpu_rss_mb"])))
|
||||||
|
print("gpu_rss_mb: {} \n".format(str(dump_result["gpu_rss_mb"])))
|
||||||
|
print("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
|
||||||
except:
|
except:
|
||||||
f.writelines("!!!!!Infer Failed\n")
|
f.writelines("!!!!!Infer Failed\n")
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user