diff --git a/csrc/fastdeploy/backends/tensorrt/trt_backend.cc b/csrc/fastdeploy/backends/tensorrt/trt_backend.cc index dd3f837d9..749a8334c 100644 --- a/csrc/fastdeploy/backends/tensorrt/trt_backend.cc +++ b/csrc/fastdeploy/backends/tensorrt/trt_backend.cc @@ -351,8 +351,7 @@ void TrtBackend::AllocateBufferInDynamicShape( // find the original index of output auto iter = outputs_order_.find(outputs_desc_[i].name); FDASSERT(iter != outputs_order_.end(), - "Cannot find output:" + outputs_desc_[i].name + - " of tensorrt network from the original model."); + "Cannot find output: %s of tensorrt network from the original model.", outputs_desc_[i].name.c_str()); auto ori_idx = iter->second; (*outputs)[ori_idx].dtype = GetFDDataType(outputs_desc_[i].dtype); (*outputs)[ori_idx].shape.assign(output_dims.d, @@ -431,29 +430,24 @@ bool TrtBackend::CreateTrtEngine(const std::string& onnx_model, FDASSERT(profile->setDimensions(item.first.c_str(), nvinfer1::OptProfileSelector::kMIN, sample::toDims(item.second)), - "[TrtBackend] Failed to set min_shape for input: " + item.first + - " in TrtBackend."); + "[TrtBackend] Failed to set min_shape for input: %s in TrtBackend.", item.first.c_str()); // set optimization shape auto iter = option.opt_shape.find(item.first); FDASSERT(iter != option.opt_shape.end(), - "[TrtBackend] Cannot find input name: " + item.first + - " in TrtBackendOption::opt_shape."); + "[TrtBackend] Cannot find input name: %s in TrtBackendOption::opt_shape.", item.first.c_str()); FDASSERT(profile->setDimensions(item.first.c_str(), nvinfer1::OptProfileSelector::kOPT, sample::toDims(iter->second)), - "[TrtBackend] Failed to set opt_shape for input: " + item.first + - " in TrtBackend."); + "[TrtBackend] Failed to set opt_shape for input: %s in TrtBackend.", item.first.c_str()); // set max shape iter = option.max_shape.find(item.first); FDASSERT(iter != option.max_shape.end(), - "[TrtBackend] Cannot find input name: " + item.first + - " in TrtBackendOption::max_shape."); + "[TrtBackend] Cannot find input name: %s in TrtBackendOption::max_shape.", item.first); FDASSERT(profile->setDimensions(item.first.c_str(), nvinfer1::OptProfileSelector::kMAX, sample::toDims(iter->second)), - "[TrtBackend] Failed to set max_shape for input: " + item.first + - " in TrtBackend."); + "[TrtBackend] Failed to set max_shape for input: %s in TrtBackend.", item.first); } config->addOptimizationProfile(profile); } @@ -502,9 +496,7 @@ bool TrtBackend::CreateTrtEngine(const std::string& onnx_model, } TensorInfo TrtBackend::GetInputInfo(int index) { - FDASSERT(index < NumInputs(), "The index:" + std::to_string(index) + - " should less than the number of inputs:" + - std::to_string(NumInputs()) + "."); + FDASSERT(index < NumInputs(), "The index: %d should less than the number of inputs: %d.", index, NumInputs()); TensorInfo info; info.name = inputs_desc_[index].name; info.shape.assign(inputs_desc_[index].shape.begin(), @@ -515,9 +507,7 @@ TensorInfo TrtBackend::GetInputInfo(int index) { TensorInfo TrtBackend::GetOutputInfo(int index) { FDASSERT(index < NumOutputs(), - "The index:" + std::to_string(index) + - " should less than the number of outputs:" + - std::to_string(NumOutputs()) + "."); + "The index: %d should less than the number of outputs: %d.", index, NumOutputs()); TensorInfo info; info.name = outputs_desc_[index].name; info.shape.assign(outputs_desc_[index].shape.begin(), diff --git a/csrc/fastdeploy/pybind/main.cc b/csrc/fastdeploy/pybind/main.cc index 77fd2c240..3570aac1b 100644 --- a/csrc/fastdeploy/pybind/main.cc +++ b/csrc/fastdeploy/pybind/main.cc @@ -34,7 +34,7 @@ pybind11::dtype FDDataTypeToNumpyDataType(const FDDataType& fd_dtype) { dt = pybind11::dtype::of(); } else { FDASSERT(false, "The function doesn't support data type of %s.", - Str(fd_dtype).c_str()); + Str(fd_dtype).c_str()); } return dt; } @@ -73,8 +73,7 @@ void PyArrayToTensor(pybind11::array& pyarray, FDTensor* tensor, pybind11::array TensorToPyArray(const FDTensor& tensor) { auto numpy_dtype = FDDataTypeToNumpyDataType(tensor.dtype); auto out = pybind11::array(numpy_dtype, tensor.shape); - memcpy(out.mutable_data(), tensor.Data(), - tensor.Numel() * FDDataTypeSize(tensor.dtype)); + memcpy(out.mutable_data(), tensor.Data(), tensor.Numel() * FDDataTypeSize(tensor.dtype)); return out; }