[Tutorial] Add ResNet Support and FastDeploy Tutorial for External Models (#347)

* first commit for yolov7

* pybind for yolov7

* CPP README.md

* CPP README.md

* modified yolov7.cc

* README.md

* python file modify

* delete license in fastdeploy/

* repush the conflict part

* README.md modified

* README.md modified

* file path modified

* file path modified

* file path modified

* file path modified

* file path modified

* README modified

* README modified

* move some helpers to private

* add examples for yolov7

* api.md modified

* api.md modified

* api.md modified

* YOLOv7

* yolov7 release link

* yolov7 release link

* yolov7 release link

* copyright

* change some helpers to private

* change variables to const and fix documents.

* gitignore

* Transfer some funtions to private member of class

* Transfer some funtions to private member of class

* Merge from develop (#9)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

* first commit for yolor

* for merge

* Develop (#11)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

* Yolor (#16)

* Develop (#11) (#12)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

* Develop (#13)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* documents

* Develop (#14)

* Fix compile problem in different python version (#26)

* fix some usage problem in linux

* Fix compile problem

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>

* Add PaddleDetetion/PPYOLOE model support (#22)

* add ppdet/ppyoloe

* Add demo code and documents

* add convert processor to vision (#27)

* update .gitignore

* Added checking for cmake include dir

* fixed missing trt_backend option bug when init from trt

* remove un-need data layout and add pre-check for dtype

* changed RGB2BRG to BGR2RGB in ppcls model

* add model_zoo yolov6 c++/python demo

* fixed CMakeLists.txt typos

* update yolov6 cpp/README.md

* add yolox c++/pybind and model_zoo demo

* move some helpers to private

* fixed CMakeLists.txt typos

* add normalize with alpha and beta

* add version notes for yolov5/yolov6/yolox

* add copyright to yolov5.cc

* revert normalize

* fixed some bugs in yolox

* fixed examples/CMakeLists.txt to avoid conflicts

* add convert processor to vision

* format examples/CMakeLists summary

* Fix bug while the inference result is empty with YOLOv5 (#29)

* Add multi-label function for yolov5

* Update README.md

Update doc

* Update fastdeploy_runtime.cc

fix variable option.trt_max_shape wrong name

* Update runtime_option.md

Update resnet model dynamic shape setting name from images to x

* Fix bug when inference result boxes are empty

* Delete detection.py

Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>
Co-authored-by: Jason <928090362@qq.com>

* add is_dynamic for YOLO series (#22)

* modify ppmatting backend and docs

* modify ppmatting docs

* fix the PPMatting size problem

* fix LimitShort's log

* retrigger ci

* modify PPMatting docs

* modify the way  for dealing with  LimitShort

* first commit for ResNet and AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* modify AddModel.md

* add explaination to code

* modify add_new_model.md

* move add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* add C++ Comment

* add link to add_new_model.md

* modify for doxygen

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* modify add_new_model.md

* add resnet explaination and modify docs

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
Co-authored-by: huangjianhui <852142024@qq.com>
Co-authored-by: Jason <928090362@qq.com>
This commit is contained in:
ziqi-jin
2022-10-21 09:29:47 +08:00
committed by GitHub
parent b565c15bf7
commit e51b8fc90e
15 changed files with 984 additions and 2 deletions

View File

@@ -0,0 +1,268 @@
# FastDeploy外部模型集成指引
在FastDeploy里面新增一个模型包括增加C++/Python的部署支持。 本文以torchvision v0.12.0中的ResNet50模型为例介绍使用FastDeploy做外部[模型集成](#modelsupport)具体包括如下3步。
| 步骤 | 说明 | 创建或修改的文件 |
|:------:|:-------------------------------------:|:---------------------------------------------:|
| [1](#step2) | 在fastdeploy/vision相应任务模块增加模型实现 | resnet.h、resnet.cc、vision.h |
| [2](#step4) | 通过pybind完成Python接口绑定 | resnet_pybind.cc、classification_pybind.cc |
| [3](#step5) | 实现Python相应调用接口 | resnet.py、\_\_init\_\_.py |
在完成上述3步之后一个外部模型就集成好了。
<br />
如果您想为FastDeploy贡献代码还需要为新增模型添加测试代码、说明文档和代码注释可在[测试](#test)中查看。
## 模型集成 <span id="modelsupport"></span>
### 模型准备 <span id="step1"></span>
在集成外部模型之前,先要将训练好的模型(.pt.pdparams 等转换成FastDeploy支持部署的模型格式.onnx.pdmodel。多数开源仓库会提供模型转换脚本可以直接利用脚本做模型的转换。由于torchvision没有提供转换脚本因此手动编写转换脚本本文中将 `torchvison.models.resnet50` 转换为 `resnet50.onnx` 参考代码如下:
```python
import torch
import torchvision.models as models
model = models.resnet50(pretrained=True)
batch_size = 1 #批处理大小
input_shape = (3, 224, 224) #输入数据,改成自己的输入shape
model.eval()
x = torch.randn(batch_size, *input_shape) # 生成张量
export_onnx_file = "resnet50.onnx" # 目的ONNX文件名
torch.onnx.export(model,
x,
export_onnx_file,
opset_version=12,
input_names=["input"], # 输入名
output_names=["output"], # 输出名
dynamic_axes={"input":{0:"batch_size"}, # 批处理变量
"output":{0:"batch_size"}})
```
执行上述脚本将会得到 `resnet50.onnx` 文件。
### C++部分 <span id="step2"></span>
* 创建`resnet.h`文件
* 创建位置
* FastDeploy/fastdeploy/vision/classification/contrib/resnet.h (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名.h)
* 创建内容
* 首先在resnet.h中创建 ResNet类并继承FastDeployModel父类之后声明`Predict``Initialize``Preprocess``Postprocess``构造函数`,以及必要的变量,具体的代码细节请参考[resnet.h](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-69128489e918f305c208476ba793d8167e77de2aa7cadf5dcbac30da448bd28e)。
```C++
class FASTDEPLOY_DECL ResNet : public FastDeployModel {
public:
ResNet(...);
virtual bool Predict(...);
private:
bool Initialize();
bool Preprocess(...);
bool Postprocess(...);
};
```
* 创建`resnet.cc`文件
* 创建位置
* FastDeploy/fastdeploy/vision/classification/contrib/resnet.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名.cc)
* 创建内容
* 在`resnet.cc`中实现`resnet.h`中声明函数的具体逻辑,其中`PreProcess` 和 `PostProcess`需要参考源官方库的前后处理逻辑复现ResNet每个函数具体逻辑如下具体的代码请参考[resnet.cc](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-d229d702de28345253a53f2a5839fd2c638f3d32fffa6a7d04d23db9da13a871)。
```C++
ResNet::ResNet(...) {
// 构造函数逻辑
// 1. 指定 Backend 2. 设置RuntimeOption 3. 调用Initialize()函数
}
bool ResNet::Initialize() {
// 初始化逻辑
// 1. 全局变量赋值 2. 调用InitRuntime()函数
return true;
}
bool ResNet::Preprocess(Mat* mat, FDTensor* output) {
// 前处理逻辑
// 1. Resize 2. BGR2RGB 3. Normalize 4. HWC2CHW 5. 处理结果存入 FDTensor类中
return true;
}
bool ResNet::Postprocess(FDTensor& infer_result, ClassifyResult* result, int topk) {
//后处理逻辑
// 1. Softmax 2. Choose topk labels 3. 结果存入 ClassifyResult类
return true;
}
bool ResNet::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
Preprocess(...)
Infer(...)
Postprocess(...)
return true;
}
```
<span id="step3"></span>
* 在`vision.h`文件中加入新增模型文件
* 修改位置
* FastDeploy/fastdeploy/vision.h
* 修改内容
```C++
#ifdef ENABLE_VISION
#include "fastdeploy/vision/classification/contrib/resnet.h"
#endif
```
### Pybind部分 <span id="step4"></span>
* 创建Pybind文件
* 创建位置
* FastDeploy/fastdeploy/vision/classification/contrib/resnet_pybind.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/外部模型/模型名_pybind.cc)
* 创建内容
* 利用Pybind将C++中的函数变量绑定到Python中具体代码请参考[resnet_pybind.cc](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-270af0d65720310e2cfbd5373c391b2110d65c0f4efa547f7b7eeffcb958bdec)。
```C++
void BindResNet(pybind11::module& m) {
pybind11::class_<vision::classification::ResNet, FastDeployModel>(
m, "ResNet")
.def(pybind11::init<std::string, std::string, RuntimeOption, ModelFormat>())
.def("predict", ...)
.def_readwrite("size", &vision::classification::ResNet::size)
.def_readwrite("mean_vals", &vision::classification::ResNet::mean_vals)
.def_readwrite("std_vals", &vision::classification::ResNet::std_vals);
}
```
* 调用Pybind函数
* 修改位置
* FastDeploy/fastdeploy/vision/classification/classification_pybind.cc (FastDeploy/C++代码存放位置/视觉模型/任务名称/任务名称}_pybind.cc)
* 修改内容
```C++
void BindResNet(pybind11::module& m);
void BindClassification(pybind11::module& m) {
auto classification_module =
m.def_submodule("classification", "Image classification models.");
BindResNet(classification_module);
}
```
### Python部分 <span id="step5"></span>
* 创建`resnet.py`文件
* 创建位置
* FastDeploy/python/fastdeploy/vision/classification/contrib/resnet.py (FastDeploy/Python代码存放位置/fastdeploy/视觉模型/任务名称/外部模型/模型名.py)
* 创建内容
* 创建ResNet类继承自FastDeployModel实现 `\_\_init\_\_`、Pybind绑定的函数如`predict()`)、以及`对Pybind绑定的全局变量进行赋值和获取的函数`,具体代码请参考[resnet.py](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-a4dc5ec2d450e91f1c03819bf314c238b37ac678df56d7dea3aab7feac10a157)。
```python
class ResNet(FastDeployModel):
def __init__(self, ...):
self._model = C.vision.classification.ResNet(...)
def predict(self, input_image, topk=1):
return self._model.predict(input_image, topk)
@property
def size(self):
return self._model.size
@size.setter
def size(self, wh):
...
```
<span id="step6"></span>
* 导入ResNet类
* 修改位置
* FastDeploy/python/fastdeploy/vision/classification/\_\_init\_\_.py (FastDeploy/Python代码存放位置/fastdeploy/视觉模型/任务名称/\_\_init\_\_.py)
* 修改内容
```Python
from .contrib.resnet import ResNet
```
## 测试 <span id="test"></span>
### 编译
* C++
* 位置FastDeploy/
```
mkdir build & cd build
cmake .. -DENABLE_ORT_BACKEND=ON -DENABLE_VISION=ON -DCMAKE_INSTALL_PREFIX=${PWD/fastdeploy-0.0.3
-DENABLE_PADDLE_BACKEND=ON -DENABLE_TRT_BACKEND=ON -DWITH_GPU=ON -DTRT_DIRECTORY=/PATH/TO/TensorRT/
make -j8
make install
```
编译会得到 build/fastdeploy-0.0.3/。
* Python
* 位置FastDeploy/python/
```
export TRT_DIRECTORY=/PATH/TO/TensorRT/ # 如果用TensorRT 需要填写TensorRT所在位置并开启 ENABLE_TRT_BACKEND
export ENABLE_TRT_BACKEND=ON
export WITH_GPU=ON
export ENABLE_PADDLE_BACKEND=ON
export ENABLE_OPENVINO_BACKEND=ON
export ENABLE_VISION=ON
export ENABLE_ORT_BACKEND=ON
python setup.py build
python setup.py bdist_wheel
cd dist
pip install fastdeploy_gpu_python-版本号-cpxx-cpxxm-系统架构.whl
```
### 编写测试代码
* 创建位置: FastDeploy/examples/vision/classification/resnet/ (FastDeploy/示例目录/视觉模型/任务名称/模型名/)
* 创建目录结构
```
.
├── cpp
│ ├── CMakeLists.txt
│ ├── infer.cc // C++ 版本测试代码
│ └── README.md // C++版本使用文档
├── python
│ ├── infer.py // Python 版本测试代码
│ └── README.md // Python版本使用文档
└── README.md // ResNet 模型集成说明文档
```
* C++
* 编写CmakeLists文件、C++ 代码以及 README.md 内容请参考[cpp/](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-afcbe607b796509581f89e38b84190717f1eeda2df0419a2ac9034197ead5f96)。
* 编译 infer.cc
* 位置FastDeploy/examples/vision/classification/resnet/cpp/
```
mkdir build & cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=/PATH/TO/FastDeploy/build/fastdeploy-0.0.3/
make
```
* Python
* Python 代码以及 README.md 内容请参考[python/](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-5a0d6be8c603a8b81454ac14c17fb93555288d9adf92bbe40454449309700135)。
### 为代码添加注释
为了方便用户理解代码,我们需要为新增代码添加注释,添加注释方法可参考如下示例。
- C++ 代码
您需要在resnet.h文件中为函数和变量增加注释有如下三种注释方式具体可参考[resnet.h](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-69128489e918f305c208476ba793d8167e77de2aa7cadf5dcbac30da448bd28e)。
```C++
/** \brief Predict for the input "im", the result will be saved in "result".
*
* \param[in] im Input image for inference.
* \param[in] result Saving the inference result.
* \param[in] topk The length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image.
*/
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
/// Tuple of (width, height)
std::vector<int> size;
/*! @brief Initialize for ResNet model, assign values to the global variables and call InitRuntime()
*/
bool Initialize();
```
- Python 代码
你需要为resnet.py文件中的函数和变量增加适当的注释示例如下具体可参考[resnet.py](https://github.com/PaddlePaddle/FastDeploy/pull/347/files#diff-a4dc5ec2d450e91f1c03819bf314c238b37ac678df56d7dea3aab7feac10a157)。
```python
def predict(self, input_image, topk=1):
"""Classify an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param topk: (int)The topk result by the classify confidence score, default 1
:return: ClassifyResult
"""
return self._model.predict(input_image, topk)
```
对于集成模型过程中的其他文件,您也可以对实现的细节添加适当的注释说明。

View File

@@ -15,3 +15,11 @@
:members: :members:
:inherited-members: :inherited-members:
``` ```
## fastdeploy.vision.classification.ResNet
```{eval-rst}
.. autoclass:: fastdeploy.vision.classification.ResNet
:members:
:inherited-members:
```

View File

@@ -0,0 +1,53 @@
# ResNet准备部署模型
- ResNet部署实现来自[Torchvision](https://github.com/pytorch/vision/tree/v0.12.0)的代码,和[基于ImageNet2012的预训练模型](https://github.com/pytorch/vision/tree/v0.12.0)。
- 1[官方库](https://github.com/pytorch/vision/tree/v0.12.0)提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
- 2自己数据训练的ResNet模型按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)操作后,参考[详细部署文档](#详细部署文档)完成部署。
## 导出ONNX模型
导入[Torchvision](https://github.com/pytorch/vision/tree/v0.12.0),加载预训练模型,并进行模型转换,具体转换步骤如下。
```python
import torch
import torchvision.models as models
model = models.resnet50(pretrained=True)
batch_size = 1 #批处理大小
input_shape = (3, 224, 224) #输入数据,改成自己的输入shape
# #set the model to inference mode
model.eval()
x = torch.randn(batch_size, *input_shape) # 生成张量
export_onnx_file = "ResNet50.onnx" # 目的ONNX文件名
torch.onnx.export(model,
x,
export_onnx_file,
opset_version=12,
input_names=["input"], # 输入名
output_names=["output"], # 输出名
dynamic_axes={"input":{0:"batch_size"}, # 批处理变量
"output":{0:"batch_size"}})
```
## 下载预训练ONNX模型
为了方便开发者的测试下面提供了ResNet导出的各系列模型开发者可直接下载使用。下表中模型的精度来源于源官方库
| 模型 | 大小 | 精度 |
|:---------------------------------------------------------------- |:----- |:----- |
| [ResNet-18](https://bj.bcebos.com/paddlehub/fastdeploy/resnet18.onnx) | 45MB | |
| [ResNet-34](https://bj.bcebos.com/paddlehub/fastdeploy/resnet34.onnx) | 84MB | |
| [ResNet-50](https://bj.bcebos.com/paddlehub/fastdeploy/resnet50.onnx) | 98MB | |
| [ResNet-101](https://bj.bcebos.com/paddlehub/fastdeploy/resnet101.onnx) | 170MB | |
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)
## 版本说明
- 本版本文档和代码基于[Torchvision v0.12.0](https://github.com/pytorch/vision/tree/v0.12.0) 编写

View File

@@ -0,0 +1,14 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,77 @@
# ResNet C++部署示例
本目录下提供`infer.cc`快速完成ResNet系列模型在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/quick_start)
以Linux上 ResNet50 推理为例,在本目录执行如下命令即可完成编译测试
```bash
#下载SDK编译模型examples代码SDK中包含了examples代码
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.1.tgz
tar xvf fastdeploy-linux-x64-gpu-0.2.1.tgz
cd fastdeploy-linux-x64-gpu-0.2.1/examples/vision/classification/resnet/cpp
mkdir build
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.2.1
make -j
# 下载ResNet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50.onnx
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU推理
./infer_demo resnet50.onnx ILSVRC2012_val_00000010.jpeg 0
# GPU推理
./infer_demo resnet50.onnx ILSVRC2012_val_00000010.jpeg 1
# GPU上TensorRT推理
./infer_demo resnet50.onnx ILSVRC2012_val_00000010.jpeg 2
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
## ResNet C++接口
### ResNet类
```c++
fastdeploy::vision::classification::ResNet(
const std::string& model_file,
const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
> ```c++
> ResNet::Predict(cv::Mat* im, ClassifyResult* result, int topk = 1)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 分类结果包括label_id以及相应的置信度, ClassifyResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
> > * **topk**(int):返回预测概率最高的topk个分类结果默认为1
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)

View File

@@ -0,0 +1,94 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file, const std::string& image_file) {
auto model = fastdeploy::vision::classification::ResNet(model_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
}
void GpuInfer(const std::string& model_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::classification::ResNet(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
}
void TrtInfer(const std::string& model_file, const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("images", {1, 3, 224, 224});
auto model = fastdeploy::vision::classification::ResNet(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_model ./resnet50.onnx ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -0,0 +1,72 @@
# ResNet模型 Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/quick_start)
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/resnet/python
# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/resnet50.onnx
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU推理
python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
# GPU推理
python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model resnet50.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
```
运行完成后返回结果如下所示
```bash
ClassifyResult(
label_ids: 332,
scores: 0.825349,
)
```
## ResNet Python接口
```python
fd.vision.classification.ResNet(model_file, params_file, runtime_option=None, model_format=ModelFormat.ONNX)
```
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
### predict函数
> ```python
> ResNet.predict(input_image, topk=1)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> > * **topk**(int):返回预测概率最高的topk个分类结果默认为1
> **返回**
>
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [ResNet 模型介绍](..)
- [ResNet C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)

View File

@@ -0,0 +1,50 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of PaddleClas model.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--topk", type=int, default=1, help="Return topk results.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.classification.ResNet(
args.model, runtime_option=runtime_option)
# 预测图片分类结果
im = cv2.imread(args.image)
result = model.predict(im.copy(), args.topk)
print(result)

View File

@@ -17,6 +17,7 @@
#ifdef ENABLE_VISION #ifdef ENABLE_VISION
#include "fastdeploy/vision/classification/contrib/yolov5cls.h" #include "fastdeploy/vision/classification/contrib/yolov5cls.h"
#include "fastdeploy/vision/classification/ppcls/model.h" #include "fastdeploy/vision/classification/ppcls/model.h"
#include "fastdeploy/vision/classification/contrib/resnet.h"
#include "fastdeploy/vision/detection/contrib/nanodet_plus.h" #include "fastdeploy/vision/detection/contrib/nanodet_plus.h"
#include "fastdeploy/vision/detection/contrib/scaledyolov4.h" #include "fastdeploy/vision/detection/contrib/scaledyolov4.h"
#include "fastdeploy/vision/detection/contrib/yolor.h" #include "fastdeploy/vision/detection/contrib/yolor.h"

View File

@@ -18,11 +18,12 @@ namespace fastdeploy {
void BindYOLOv5Cls(pybind11::module& m); void BindYOLOv5Cls(pybind11::module& m);
void BindPaddleClas(pybind11::module& m); void BindPaddleClas(pybind11::module& m);
void BindResNet(pybind11::module& m);
void BindClassification(pybind11::module& m) { void BindClassification(pybind11::module& m) {
auto classification_module = auto classification_module =
m.def_submodule("classification", "Image classification models."); m.def_submodule("classification", "Image classification models.");
BindYOLOv5Cls(classification_module); BindYOLOv5Cls(classification_module);
BindPaddleClas(classification_module); BindPaddleClas(classification_module);
BindResNet(classification_module);
} }
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -0,0 +1,134 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/contrib/resnet.h"
#include "fastdeploy/vision/utils/utils.h"
#include "fastdeploy/utils/perf.h"
namespace fastdeploy {
namespace vision {
namespace classification {
ResNet::ResNet(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
// In constructor, the 3 steps below are necessary.
// 1. set the Backend 2. set RuntimeOption 3. call Initialize()
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER};
valid_gpu_backends = {Backend::PDINFER};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool ResNet::Initialize() {
// In this function, the 3 steps below are necessary.
// 1. assign values to the global variables 2. call InitRuntime()
size = {224, 224};
mean_vals = {0.485f, 0.456f, 0.406f};
std_vals = {0.229f, 0.224f, 0.225f};
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool ResNet::Preprocess(Mat* mat, FDTensor* output) {
// In this function, the preprocess need be implemented according to the original Repos,
// The result of preprocess has to be saved in FDTensor variable, because the input of Infer() need to be std::vector<FDTensor>.
// 1. Resize 2. BGR2RGB 3. Normalize 4. HWC2CHW 5. Put the result into FDTensor variable.
if (mat->Height()!=size[0] || mat->Width()!=size[1]){
int interp = cv::INTER_LINEAR;
Resize::Run(mat, size[1], size[0], -1, -1, interp);
}
BGR2RGB::Run(mat);
Normalize::Run(mat, mean_vals, std_vals);
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool ResNet::Postprocess(FDTensor& infer_result,
ClassifyResult* result, int topk) {
// In this function, the postprocess need be implemented according to the original Repos,
// Finally the reslut of postprocess should be saved in ClassifyResult variable.
// 1. Softmax 2. Choose topk labels 3. Put the result into ClassifyResult variable.
int num_classes = infer_result.shape[1];
Softmax(infer_result, &infer_result);
const float* infer_result_buffer = reinterpret_cast<float*>(infer_result.Data());
topk = std::min(num_classes, topk);
result->label_ids =
utils::TopKIndices(infer_result_buffer, num_classes, topk);
result->scores.resize(topk);
for (int i = 0; i < topk; ++i) {
result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
}
return true;
}
bool ResNet::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
// In this function, the Preprocess(), Infer(), and Postprocess() are called sequentially.
Mat mat(*im);
std::vector<FDTensor> processed_data(1);
if (!Preprocess(&mat, &(processed_data[0]))) {
FDERROR << "Failed to preprocess input data while using model:"
<< ModelName() << "." << std::endl;
return false;
}
processed_data[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(processed_data, &output_tensors)) {
FDERROR << "Failed to inference while using model:" << ModelName() << "."
<< std::endl;
return false;
}
if (!Postprocess(output_tensors[0], result, topk)) {
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
<< std::endl;
return false;
}
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,74 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
// The namespace shoulde be
// fastdeploy::vision::classification (fastdeploy::vision::${task})
namespace fastdeploy {
namespace vision {
/** \brief All object classification model APIs are defined inside this namespace
*
*/
namespace classification {
/*! @brief ResNet series model
*/
class FASTDEPLOY_DECL ResNet : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./resnet50.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
ResNet(const std::string& model_file,
const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
virtual std::string ModelName() const { return "ResNet"; }
/** \brief Predict for the input "im", the result will be saved in "result".
*
* \param[in] im Input image for inference.
* \param[in] result Saving the inference result.
* \param[in] topk The length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image.
*/
virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1);
/// Tuple of (width, height)
std::vector<int> size;
/// Mean parameters for normalize
std::vector<float> mean_vals;
/// Std parameters for normalize
std::vector<float> std_vals;
private:
/*! @brief Initialize for ResNet model, assign values to the global variables and call InitRuntime()
*/
bool Initialize();
/// PreProcessing for the input "mat", the result will be saved in "outputs".
bool Preprocess(Mat* mat, FDTensor* outputs);
/*! @brief PostProcessing for the input "infer_result", the result will be saved in "result".
*/
bool Postprocess(FDTensor& infer_result, ClassifyResult* result,
int topk = 1);
};
} // namespace classification
} // namespace vision
} // namespace fastdeploy

View File

@@ -0,0 +1,40 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
// namespace should be `fastdeploy`
namespace fastdeploy {
// the name of Pybind function should be Bind${model_name}
void BindResNet(pybind11::module& m) {
// the constructor and the predict funtion are necessary
// the constructor is used to initialize the python model class.
// the necessary public functions and variables like `size`, `mean_vals` should also be binded.
pybind11::class_<vision::classification::ResNet, FastDeployModel>(
m, "ResNet")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::classification::ResNet& self, pybind11::array& data,
int topk = 1) {
auto mat = PyArrayToCvMat(data);
vision::ClassifyResult res;
self.Predict(&mat, &res, topk);
return res;
})
.def_readwrite("size", &vision::classification::ResNet::size)
.def_readwrite("mean_vals", &vision::classification::ResNet::mean_vals)
.def_readwrite("std_vals", &vision::classification::ResNet::std_vals);
}
} // namespace fastdeploy

View File

@@ -15,7 +15,7 @@ from __future__ import absolute_import
from .contrib.yolov5cls import YOLOv5Cls from .contrib.yolov5cls import YOLOv5Cls
from .ppcls import PaddleClasModel from .ppcls import PaddleClasModel
from .contrib.resnet import ResNet
PPLCNet = PaddleClasModel PPLCNet = PaddleClasModel
PPLCNetv2 = PaddleClasModel PPLCNetv2 = PaddleClasModel
EfficientNet = PaddleClasModel EfficientNet = PaddleClasModel

View File

@@ -0,0 +1,96 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class ResNet(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a image classification model exported by ResNet.
:param model_file: (str)Path of model file, e.g resnet/resnet50.onnx
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
"""
# call super() to initialize the backend_option
# the result of initialization will be saved in self._runtime_option
super(ResNet, self).__init__(runtime_option)
self._model = C.vision.classification.ResNet(
model_file, params_file, self._runtime_option, model_format)
# self.initialized shows the initialization of the model is successful or not
assert self.initialized, "ResNet initialize failed."
# Predict and return the inference result of "input_image".
def predict(self, input_image, topk=1):
"""Classify an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param topk: (int)The topk result by the classify confidence score, default 1
:return: ClassifyResult
"""
return self._model.predict(input_image, topk)
# Implement the setter and getter method for variables
@property
def size(self):
"""
Returns the preprocess image size
"""
return self._model.size
@property
def mean_vals(self):
"""
Returns the mean value of normlization
"""
return self._model.mean_vals
@property
def std_vals(self):
"""
Returns the std value of normlization
"""
return self._model.std_vals
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._model.size = wh
@mean_vals.setter
def mean_vals(self, value):
assert isinstance(
value, list), "The value to set `mean_vals` must be type of list."
self._model.mean_vals = value
@std_vals.setter
def std_vals(self, value):
assert isinstance(
value, list), "The value to set `std_vals` must be type of list."
self._model.std_vals = value