[Doc] Update multi_thread docs in tutorials (#886)

* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

* Update segmentation result docs

* Update old predict api and DisableNormalizeAndPermute

* Update resize segmentation label map with cv::INTER_NEAREST

* Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg

* Add multi thread demo

* Add python model clone function

* Add multi thread python && C++ example

* Fix bug

* Update python && cpp multi_thread examples

* Add cpp && python directory

* Add README.md for examples

* Delete redundant code

* Create README_CN.md

* Rename README_CN.md to README.md

* Update README.md

* Update README.md

Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
huangjianhui
2022-12-15 14:53:44 +08:00
committed by GitHub
parent 3164af65a4
commit e4b1581593
3 changed files with 136 additions and 109 deletions

View File

@@ -1,31 +1,45 @@
# PaddleClas模型 Python部署示例
# PaddleClas模型 Python多线程/进程部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`multi_thread_process.py`快速完成ResNet50_vd在CPU/GPU以及GPU上通过TensorRT加速部署的多线程/进程示例。执行如下脚本即可完成
本目录下提供`infer.py`快速完成ResNet50_vd在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/paddleclas/python
cd FastDeploy/tutorials/multi_thread/python
# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
# GPU推理
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
# GPU上使用TensorRT推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1
# IPU推理注意IPU推理首次运行会有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image ILSVRC2012_val_00000010.jpeg --device ipu --topk 1
# CPU多线程推理
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --thread_num 1
# CPU多进程推理
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --use_multi_process True --process_num 1
# GPU多线程推理
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --thread_num 1
# GPU多进程推理
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --use_multi_process True --process_num 1
# GPU上使用TensorRT多线程推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --thread_num 1
# GPU上使用TensorRT多进程推理 注意TensorRT推理第一次运行有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --use_multi_process True --process_num 1
# IPU多线程推理注意IPU推理首次运行会有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --thread_num 1
# IPU多进程推理注意IPU推理首次运行会有序列化模型的操作有一定耗时需要耐心等待
python infer.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --use_multi_process True --process_num 1
```
>> **注意**: `--image_path` 可以输入图片文件夹的路径
运行完成后返回结果如下所示
```bash
@@ -33,45 +47,4 @@ ClassifyResult(
label_ids: 153,
scores: 0.686229,
)
```
## PaddleClasModel Python接口
```python
fd.vision.classification.PaddleClasModel(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PaddleClas模型加载和初始化其中model_file, params_file为训练模型导出的Paddle inference文件具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/zh_CN/inference_deployment/export_model.md#2-%E5%88%86%E7%B1%BB%E6%A8%A1%E5%9E%8B%E5%AF%BC%E5%87%BA)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### predict函数
> ```python
> PaddleClasModel.predict(input_image, topk=1)
> ```
>
> 模型预测结口输入图像直接输出分类topk结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> > * **topk**(int):返回预测概率最高的topk个分类结果默认为1
> **返回**
>
> > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [PaddleClas 模型介绍](..)
- [PaddleClas C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
```