[Model] Support Paddle3D PETR v2 model (#1863)

* Support PETR v2

* make petrv2 precision equal with the origin repo

* delete extra func

* modify review problem

* delete visualize

* Update README_CN.md

* Update README.md

* Update README_CN.md

* fix build problem

* delete external variable and function

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
CoolCola
2023-05-19 10:45:36 +08:00
committed by GitHub
parent c8ff8b63e8
commit e3b285c762
20 changed files with 1181 additions and 0 deletions

View File

@@ -14,3 +14,4 @@
from __future__ import absolute_import
from .paddle3d.smoke import *
from .paddle3d.petr import *

View File

@@ -0,0 +1,106 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class PetrPreprocessor:
def __init__(self, config_file):
"""Create a preprocessor for Petr
"""
self._preprocessor = C.vision.perception.PetrPreprocessor(config_file)
def run(self, input_ims):
"""Preprocess input images for Petr
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
class PetrPostprocessor:
def __init__(self):
"""Create a postprocessor for Petr
"""
self._postprocessor = C.vision.perception.PetrPostprocessor()
def run(self, runtime_results):
"""Postprocess the runtime results for Petr
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:return: list of PerceptionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
"""
return self._postprocessor.run(runtime_results)
class Petr(FastDeployModel):
def __init__(self,
model_file,
params_file,
config_file,
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load a SMoke model exported by Petr.
:param model_file: (str)Path of model file, e.g ./petr.pdmodel
:param params_file: (str)Path of parameters file, e.g ./petr.pdiparams
:param config_file: (str)Path of config file, e.g ./infer_cfg.yaml
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
super(Petr, self).__init__(runtime_option)
self._model = C.vision.perception.Petr(
model_file, params_file, config_file, self._runtime_option,
model_format)
assert self.initialized, "Petr initialize failed."
def predict(self, input_image):
"""Detect an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:param conf_threshold: confidence threshold for postprocessing, default is 0.25
:param nms_iou_threshold: iou threshold for NMS, default is 0.5
:return: PerceptionResult
"""
return self._model.predict(input_image)
def batch_predict(self, images):
"""Classify a batch of input image
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
:return list of PerceptionResult
"""
return self._model.batch_predict(images)
@property
def preprocessor(self):
"""Get PetrPreprocessor object of the loaded model
:return PetrPreprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get PetrPostprocessor object of the loaded model
:return PetrPostprocessor
"""
return self._model.postprocessor