mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 10:00:29 +08:00
Add PPSeg evaluation function (#137)
* Add PPSeg evaluation function * Add average_inference_time function
This commit is contained in:
95
fastdeploy/vision/evaluation/segmentation.py
Normal file
95
fastdeploy/vision/evaluation/segmentation.py
Normal file
@@ -0,0 +1,95 @@
|
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from tqdm import trange
|
||||||
|
import numpy as np
|
||||||
|
import collections
|
||||||
|
import os
|
||||||
|
import math
|
||||||
|
import time
|
||||||
|
|
||||||
|
|
||||||
|
def eval_segmentation(model, data_dir):
|
||||||
|
import cv2
|
||||||
|
from utils import Cityscapes
|
||||||
|
from utils import f1_score, calculate_area, mean_iou, accuracy, kappa
|
||||||
|
assert os.path.isdir(
|
||||||
|
data_dir), "The image_file_path:{} is not a directory.".format(
|
||||||
|
data_dir)
|
||||||
|
eval_dataset = Cityscapes(dataset_root=data_dir, mode="val")
|
||||||
|
file_list = eval_dataset.file_list
|
||||||
|
image_num = eval_dataset.num_samples
|
||||||
|
num_classes = eval_dataset.num_classes
|
||||||
|
intersect_area_all = 0
|
||||||
|
pred_area_all = 0
|
||||||
|
label_area_all = 0
|
||||||
|
conf_mat_all = []
|
||||||
|
twenty_percent_image_num = math.ceil(image_num * 0.2)
|
||||||
|
start_time = 0
|
||||||
|
end_time = 0
|
||||||
|
average_inference_time = 0
|
||||||
|
for image_label_path, i in zip(file_list,
|
||||||
|
trange(
|
||||||
|
image_num, desc="Inference Progress")):
|
||||||
|
if i == twenty_percent_image_num:
|
||||||
|
start_time = time.time()
|
||||||
|
im = cv2.imread(image_label_path[0])
|
||||||
|
label = cv2.imread(image_label_path[1], cv2.IMREAD_GRAYSCALE)
|
||||||
|
result = model.predict(im)
|
||||||
|
if i == image_num - 1:
|
||||||
|
end_time = time.time()
|
||||||
|
average_inference_time = round(
|
||||||
|
(end_time - start_time) / (image_num - twenty_percent_image_num),
|
||||||
|
4)
|
||||||
|
pred = np.array(result.label_map).reshape(result.shape[0],
|
||||||
|
result.shape[1])
|
||||||
|
intersect_area, pred_area, label_area = calculate_area(pred, label,
|
||||||
|
num_classes)
|
||||||
|
intersect_area_all = intersect_area_all + intersect_area
|
||||||
|
pred_area_all = pred_area_all + pred_area
|
||||||
|
label_area_all = label_area_all + label_area
|
||||||
|
|
||||||
|
class_iou, miou = mean_iou(intersect_area_all, pred_area_all,
|
||||||
|
label_area_all)
|
||||||
|
class_acc, oacc = accuracy(intersect_area_all, pred_area_all)
|
||||||
|
kappa_res = kappa(intersect_area_all, pred_area_all, label_area_all)
|
||||||
|
category_f1score = f1_score(intersect_area_all, pred_area_all,
|
||||||
|
label_area_all)
|
||||||
|
|
||||||
|
eval_metrics = collections.OrderedDict(
|
||||||
|
zip([
|
||||||
|
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
|
||||||
|
'category_F1-score', 'average_inference_time(s)'
|
||||||
|
], [
|
||||||
|
miou, class_iou, oacc, class_acc, kappa_res, category_f1score,
|
||||||
|
average_inference_time
|
||||||
|
]))
|
||||||
|
return eval_metrics
|
||||||
|
|
||||||
|
|
||||||
|
import fastdeploy as fd
|
||||||
|
#model = fd.vision.segmentation.PaddleSegModel("/huangjianhui/temp/FastDeploy/model_zoo/vision/ppseg/unet/unet_Cityscapes/model.pdmodel",
|
||||||
|
# "/huangjianhui/temp/FastDeploy/model_zoo/vision/ppseg/unet/unet_Cityscapes//model.pdiparams",
|
||||||
|
# "/huangjianhui/temp/FastDeploy/model_zoo/vision/ppseg/unet/unet_Cityscapes/deploy.yaml")
|
||||||
|
#
|
||||||
|
option = fd.RuntimeOption()
|
||||||
|
option.use_paddle_backend()
|
||||||
|
option.use_gpu(3)
|
||||||
|
model = fd.vision.segmentation.PaddleSegModel(
|
||||||
|
"/huangjianhui/temp/FastDeploy/model_zoo/vision/ppseg/PP-LiteSeg/output_no_static_size/model.pdmodel",
|
||||||
|
"/huangjianhui/temp/FastDeploy/model_zoo/vision/ppseg/PP-LiteSeg/output_no_static_size/model.pdiparams",
|
||||||
|
"/huangjianhui/temp/FastDeploy/model_zoo/vision/ppseg/PP-LiteSeg/output_no_static_size/deploy.yaml",
|
||||||
|
option)
|
||||||
|
|
||||||
|
result = eval_segmentation(model, "/huangjianhui/PaddleSeg/data/cityscapes/")
|
@@ -14,8 +14,10 @@
|
|||||||
|
|
||||||
from . import fd_logging
|
from . import fd_logging
|
||||||
from .util import *
|
from .util import *
|
||||||
from .metrics import *
|
from .coco_metrics import *
|
||||||
|
from .seg_metrics import *
|
||||||
from .json_results import *
|
from .json_results import *
|
||||||
from .map_utils import *
|
from .map_utils import *
|
||||||
from .coco_utils import *
|
from .coco_utils import *
|
||||||
from .coco import *
|
from .coco import *
|
||||||
|
from .cityscapes import *
|
||||||
|
74
fastdeploy/vision/evaluation/utils/cityscapes.py
Normal file
74
fastdeploy/vision/evaluation/utils/cityscapes.py
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
from . import fd_logging as logging
|
||||||
|
|
||||||
|
#import fd_logging as logging
|
||||||
|
|
||||||
|
|
||||||
|
class Cityscapes(object):
|
||||||
|
"""
|
||||||
|
Cityscapes dataset `https://www.cityscapes-dataset.com/`.
|
||||||
|
The folder structure is as follow:
|
||||||
|
|
||||||
|
cityscapes
|
||||||
|
|
|
||||||
|
|--leftImg8bit
|
||||||
|
| |--train
|
||||||
|
| |--val
|
||||||
|
| |--test
|
||||||
|
|
|
||||||
|
|--gtFine
|
||||||
|
| |--train
|
||||||
|
| |--val
|
||||||
|
| |--test
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dataset_root (str): Cityscapes dataset directory.
|
||||||
|
"""
|
||||||
|
NUM_CLASSES = 19
|
||||||
|
|
||||||
|
def __init__(self, dataset_root, mode):
|
||||||
|
self.dataset_root = dataset_root
|
||||||
|
self.file_list = list()
|
||||||
|
mode = mode.lower()
|
||||||
|
self.mode = mode
|
||||||
|
self.num_classes = self.NUM_CLASSES
|
||||||
|
self.ignore_index = 255
|
||||||
|
|
||||||
|
img_dir = os.path.join(self.dataset_root, 'leftImg8bit')
|
||||||
|
label_dir = os.path.join(self.dataset_root, 'gtFine')
|
||||||
|
if self.dataset_root is None or not os.path.isdir(
|
||||||
|
self.dataset_root) or not os.path.isdir(
|
||||||
|
img_dir) or not os.path.isdir(label_dir):
|
||||||
|
raise ValueError(
|
||||||
|
"The dataset is not Found or the folder structure is nonconfoumance."
|
||||||
|
)
|
||||||
|
|
||||||
|
label_files = sorted(
|
||||||
|
glob.glob(
|
||||||
|
os.path.join(label_dir, mode, '*',
|
||||||
|
'*_gtFine_labelTrainIds.png')))
|
||||||
|
img_files = sorted(
|
||||||
|
glob.glob(os.path.join(img_dir, mode, '*', '*_leftImg8bit.png')))
|
||||||
|
|
||||||
|
self.file_list = [
|
||||||
|
[img_path, label_path]
|
||||||
|
for img_path, label_path in zip(img_files, label_files)
|
||||||
|
]
|
||||||
|
|
||||||
|
self.num_samples = len(self.file_list)
|
||||||
|
logging.info("{} samples in file {}".format(self.num_samples, img_dir))
|
143
fastdeploy/vision/evaluation/utils/seg_metrics.py
Normal file
143
fastdeploy/vision/evaluation/utils/seg_metrics.py
Normal file
@@ -0,0 +1,143 @@
|
|||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def f1_score(intersect_area, pred_area, label_area):
|
||||||
|
class_f1_sco = []
|
||||||
|
for i in range(len(intersect_area)):
|
||||||
|
if pred_area[i] + label_area[i] == 0:
|
||||||
|
f1_sco = 0
|
||||||
|
elif pred_area[i] == 0:
|
||||||
|
f1_sco = 0
|
||||||
|
else:
|
||||||
|
prec = intersect_area[i] / pred_area[i]
|
||||||
|
rec = intersect_area[i] / label_area[i]
|
||||||
|
f1_sco = 2 * prec * rec / (prec + rec)
|
||||||
|
class_f1_sco.append(f1_sco)
|
||||||
|
return np.array(class_f1_sco)
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_area(pred, label, num_classes, ignore_index=255):
|
||||||
|
"""
|
||||||
|
Calculate intersect, prediction and label area
|
||||||
|
|
||||||
|
Args:
|
||||||
|
pred (np.ndarray): The prediction by model.
|
||||||
|
label (np.ndarray): The ground truth of image.
|
||||||
|
num_classes (int): The unique number of target classes.
|
||||||
|
ignore_index (int): Specifies a target value that is ignored. Default: 255.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Numpy Array: The intersection area of prediction and the ground on all class.
|
||||||
|
Numpy Array: The prediction area on all class.
|
||||||
|
Numpy Array: The ground truth area on all class
|
||||||
|
"""
|
||||||
|
if not pred.shape == label.shape:
|
||||||
|
raise ValueError('Shape of `pred` and `label should be equal, '
|
||||||
|
'but there are {} and {}.'.format(pred.shape,
|
||||||
|
label.shape))
|
||||||
|
|
||||||
|
mask = label != ignore_index
|
||||||
|
pred = pred + 1
|
||||||
|
label = label + 1
|
||||||
|
pred = pred * mask
|
||||||
|
label = label * mask
|
||||||
|
pred = np.eye(num_classes + 1)[pred]
|
||||||
|
label = np.eye(num_classes + 1)[label]
|
||||||
|
pred = pred[:, 1:]
|
||||||
|
label = label[:, 1:]
|
||||||
|
|
||||||
|
pred_area = []
|
||||||
|
label_area = []
|
||||||
|
intersect_area = []
|
||||||
|
|
||||||
|
for i in range(num_classes):
|
||||||
|
pred_i = pred[:, :, i]
|
||||||
|
label_i = label[:, :, i]
|
||||||
|
pred_area_i = np.sum(pred_i)
|
||||||
|
label_area_i = np.sum(label_i)
|
||||||
|
intersect_area_i = np.sum(pred_i * label_i)
|
||||||
|
pred_area.append(pred_area_i)
|
||||||
|
label_area.append(label_area_i)
|
||||||
|
intersect_area.append(intersect_area_i)
|
||||||
|
return np.array(intersect_area), np.array(pred_area), np.array(label_area)
|
||||||
|
|
||||||
|
|
||||||
|
def mean_iou(intersect_area, pred_area, label_area):
|
||||||
|
"""
|
||||||
|
Calculate iou.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes.
|
||||||
|
pred_area (np.ndarray): The prediction area on all classes.
|
||||||
|
label_area (np.ndarray): The ground truth area on all classes.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
np.ndarray: iou on all classes.
|
||||||
|
float: mean iou of all classes.
|
||||||
|
"""
|
||||||
|
union = pred_area + label_area - intersect_area
|
||||||
|
class_iou = []
|
||||||
|
for i in range(len(intersect_area)):
|
||||||
|
if union[i] == 0:
|
||||||
|
iou = 0
|
||||||
|
else:
|
||||||
|
iou = intersect_area[i] / union[i]
|
||||||
|
class_iou.append(iou)
|
||||||
|
miou = np.mean(class_iou)
|
||||||
|
return np.array(class_iou), miou
|
||||||
|
|
||||||
|
|
||||||
|
def accuracy(intersect_area, pred_area):
|
||||||
|
"""
|
||||||
|
Calculate accuracy
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes..
|
||||||
|
pred_area (np.ndarray): The prediction area on all classes.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
np.ndarray: accuracy on all classes.
|
||||||
|
float: mean accuracy.
|
||||||
|
"""
|
||||||
|
class_acc = []
|
||||||
|
for i in range(len(intersect_area)):
|
||||||
|
if pred_area[i] == 0:
|
||||||
|
acc = 0
|
||||||
|
else:
|
||||||
|
acc = intersect_area[i] / pred_area[i]
|
||||||
|
class_acc.append(acc)
|
||||||
|
macc = np.sum(intersect_area) / np.sum(pred_area)
|
||||||
|
return np.array(class_acc), macc
|
||||||
|
|
||||||
|
|
||||||
|
def kappa(intersect_area, pred_area, label_area):
|
||||||
|
"""
|
||||||
|
Calculate kappa coefficient
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intersect_area (np.ndarray): The intersection area of prediction and ground truth on all classes..
|
||||||
|
pred_area (np.ndarray): The prediction area on all classes.
|
||||||
|
label_area (np.ndarray): The ground truth area on all classes.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
float: kappa coefficient.
|
||||||
|
"""
|
||||||
|
total_area = np.sum(label_area)
|
||||||
|
po = np.sum(intersect_area) / total_area
|
||||||
|
pe = np.sum(pred_area * label_area) / (total_area * total_area)
|
||||||
|
kappa = (po - pe) / (1 - pe)
|
||||||
|
return kappa
|
Reference in New Issue
Block a user