mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-18 22:44:39 +08:00
Add NanoDet-Plus Model support (#32)
* update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * Add NanoDet-Plus Model support Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
@@ -1,3 +1,17 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
function(add_fastdeploy_executable FIELD CC_FILE)
|
||||
# temp target name/file var in function scope
|
||||
set(TEMP_TARGET_FILE ${CC_FILE})
|
||||
|
53
examples/vision/rangilyu_nanodet_plus.cc
Normal file
53
examples/vision/rangilyu_nanodet_plus.cc
Normal file
@@ -0,0 +1,53 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
int main() {
|
||||
namespace vis = fastdeploy::vision;
|
||||
|
||||
std::string model_file = "../resources/models/nanodet-plus-m_320.onnx";
|
||||
std::string img_path = "../resources/images/bus.jpg";
|
||||
std::string vis_path =
|
||||
"../resources/outputs/rangilyu_nanodet_plus_vis_result.jpg";
|
||||
|
||||
auto model = vis::rangilyu::NanoDetPlus(model_file);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Init Failed! Model: " << model_file << std::endl;
|
||||
return -1;
|
||||
} else {
|
||||
std::cout << "Init Done! Model:" << model_file << std::endl;
|
||||
}
|
||||
model.EnableDebug();
|
||||
|
||||
cv::Mat im = cv::imread(img_path);
|
||||
cv::Mat vis_im = im.clone();
|
||||
|
||||
vis::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Prediction Failed." << std::endl;
|
||||
return -1;
|
||||
} else {
|
||||
std::cout << "Prediction Done!" << std::endl;
|
||||
}
|
||||
|
||||
// 输出预测框结果
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
// 可视化预测结果
|
||||
vis::Visualize::VisDetection(&vis_im, res);
|
||||
cv::imwrite(vis_path, vis_im);
|
||||
std::cout << "Detect Done! Saved: " << vis_path << std::endl;
|
||||
return 0;
|
||||
}
|
@@ -19,6 +19,7 @@
|
||||
#include "fastdeploy/vision/meituan/yolov6.h"
|
||||
#include "fastdeploy/vision/ppcls/model.h"
|
||||
#include "fastdeploy/vision/ppdet/ppyoloe.h"
|
||||
#include "fastdeploy/vision/rangilyu/nanodet_plus.h"
|
||||
#include "fastdeploy/vision/ppseg/model.h"
|
||||
#include "fastdeploy/vision/ultralytics/yolov5.h"
|
||||
#include "fastdeploy/vision/wongkinyiu/yolor.h"
|
||||
|
@@ -22,3 +22,4 @@ from . import meituan
|
||||
from . import megvii
|
||||
from . import visualize
|
||||
from . import wongkinyiu
|
||||
from . import rangilyu
|
||||
|
@@ -28,8 +28,8 @@ class YOLOX(FastDeployModel):
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(YOLOX, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.megvii.YOLOX(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
self._model = C.vision.megvii.YOLOX(model_file, params_file,
|
||||
self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "YOLOX initialize failed."
|
||||
|
||||
@@ -80,7 +80,7 @@ class YOLOX(FastDeployModel):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `is_decode_exported` must be type of bool."
|
||||
self._model.max_wh = value
|
||||
self._model.is_decode_exported = value
|
||||
|
||||
@downsample_strides.setter
|
||||
def downsample_strides(self, value):
|
||||
|
105
fastdeploy/vision/rangilyu/__init__.py
Normal file
105
fastdeploy/vision/rangilyu/__init__.py
Normal file
@@ -0,0 +1,105 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from ... import FastDeployModel, Frontend
|
||||
from ... import fastdeploy_main as C
|
||||
|
||||
|
||||
class NanoDetPlus(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=Frontend.ONNX):
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(NanoDetPlus, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.rangilyu.NanoDetPlus(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "NanoDetPlus initialize failed."
|
||||
|
||||
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
|
||||
return self._model.predict(input_image, conf_threshold,
|
||||
nms_iou_threshold)
|
||||
|
||||
# 一些跟NanoDetPlus模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [416, 416]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def padding_value(self):
|
||||
return self._model.padding_value
|
||||
|
||||
@property
|
||||
def keep_ratio(self):
|
||||
return self._model.keep_ratio
|
||||
|
||||
@property
|
||||
def downsample_strides(self):
|
||||
return self._model.downsample_strides
|
||||
|
||||
@property
|
||||
def max_wh(self):
|
||||
return self._model.max_wh
|
||||
|
||||
@property
|
||||
def reg_max(self):
|
||||
return self._model.reg_max
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, [list, tuple]),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@padding_value.setter
|
||||
def padding_value(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
list), "The value to set `padding_value` must be type of list."
|
||||
self._model.padding_value = value
|
||||
|
||||
@keep_ratio.setter
|
||||
def keep_ratio(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `keep_ratio` must be type of bool."
|
||||
self._model.keep_ratio = value
|
||||
|
||||
@downsample_strides.setter
|
||||
def downsample_strides(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
list), "The value to set `downsample_strides` must be type of list."
|
||||
self._model.downsample_strides = value
|
||||
|
||||
@max_wh.setter
|
||||
def max_wh(self, value):
|
||||
assert isinstance(
|
||||
value, float), "The value to set `max_wh` must be type of float."
|
||||
self._model.max_wh = value
|
||||
|
||||
@reg_max.setter
|
||||
def reg_max(self, value):
|
||||
assert isinstance(
|
||||
value, int), "The value to set `reg_max` must be type of int."
|
||||
self._model.reg_max = value
|
355
fastdeploy/vision/rangilyu/nanodet_plus.cc
Normal file
355
fastdeploy/vision/rangilyu/nanodet_plus.cc
Normal file
@@ -0,0 +1,355 @@
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/rangilyu/nanodet_plus.h"
|
||||
#include "fastdeploy/utils/perf.h"
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
namespace vision {
|
||||
|
||||
namespace rangilyu {
|
||||
|
||||
struct NanoDetPlusCenterPoint {
|
||||
int grid0;
|
||||
int grid1;
|
||||
int stride;
|
||||
};
|
||||
|
||||
void GenerateNanoDetPlusCenterPoints(
|
||||
const std::vector<int>& size, const std::vector<int>& downsample_strides,
|
||||
std::vector<NanoDetPlusCenterPoint>* center_points) {
|
||||
// size: tuple of input (width, height), e.g (320, 320)
|
||||
// downsample_strides: downsample strides in NanoDet and
|
||||
// NanoDet-Plus, e.g (8, 16, 32, 64)
|
||||
const int width = size[0];
|
||||
const int height = size[1];
|
||||
for (const auto& ds : downsample_strides) {
|
||||
int num_grid_w = width / ds;
|
||||
int num_grid_h = height / ds;
|
||||
for (int g1 = 0; g1 < num_grid_h; ++g1) {
|
||||
for (int g0 = 0; g0 < num_grid_w; ++g0) {
|
||||
(*center_points).emplace_back(NanoDetPlusCenterPoint{g0, g1, ds});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void WrapAndResize(Mat* mat, std::vector<int> size, std::vector<float> color,
|
||||
bool keep_ratio = false) {
|
||||
// Reference: nanodet/data/transform/warp.py#L139
|
||||
// size: tuple of input (width, height)
|
||||
// The default value of `keep_ratio` is `fasle` in
|
||||
// `config/nanodet-plus-m-1.5x_320.yml` for both
|
||||
// train and val processes. So, we just let this
|
||||
// option default `false` according to the official
|
||||
// implementation in NanoDet and NanoDet-Plus.
|
||||
// Note, this function will apply a normal resize
|
||||
// operation to input Mat if the keep_ratio option
|
||||
// is fasle and the behavior will be the same as
|
||||
// yolov5's letterbox if keep_ratio is true.
|
||||
|
||||
// with keep_ratio = false (default)
|
||||
if (!keep_ratio) {
|
||||
int resize_h = size[1];
|
||||
int resize_w = size[0];
|
||||
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
||||
Resize::Run(mat, resize_w, resize_h);
|
||||
}
|
||||
return;
|
||||
}
|
||||
// with keep_ratio = true, same as yolov5's letterbox
|
||||
float r = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
|
||||
size[0] * 1.0f / static_cast<float>(mat->Width()));
|
||||
|
||||
int resize_h = int(round(static_cast<float>(mat->Height()) * r));
|
||||
int resize_w = int(round(static_cast<float>(mat->Width()) * r));
|
||||
|
||||
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
||||
Resize::Run(mat, resize_w, resize_h);
|
||||
}
|
||||
|
||||
int pad_w = size[0] - resize_w;
|
||||
int pad_h = size[1] - resize_h;
|
||||
if (pad_h > 0 || pad_w > 0) {
|
||||
float half_h = pad_h * 1.0 / 2;
|
||||
int top = int(round(half_h - 0.1));
|
||||
int bottom = int(round(half_h + 0.1));
|
||||
float half_w = pad_w * 1.0 / 2;
|
||||
int left = int(round(half_w - 0.1));
|
||||
int right = int(round(half_w + 0.1));
|
||||
Pad::Run(mat, top, bottom, left, right, color);
|
||||
}
|
||||
}
|
||||
|
||||
void GFLRegression(const float* logits, size_t reg_num, float* offset) {
|
||||
// Hint: reg_num = reg_max + 1
|
||||
FDASSERT(((nullptr != logits) && (reg_num != 0)),
|
||||
"NanoDetPlus: logits is nullptr or reg_num is 0 in GFLRegression.");
|
||||
// softmax
|
||||
float total_exp = 0.f;
|
||||
std::vector<float> softmax_probs(reg_num);
|
||||
for (size_t i = 0; i < reg_num; ++i) {
|
||||
softmax_probs[i] = std::exp(logits[i]);
|
||||
total_exp += softmax_probs[i];
|
||||
}
|
||||
for (size_t i = 0; i < reg_num; ++i) {
|
||||
softmax_probs[i] = softmax_probs[i] / total_exp;
|
||||
}
|
||||
// gfl regression -> offset
|
||||
for (size_t i = 0; i < reg_num; ++i) {
|
||||
(*offset) += static_cast<float>(i) * softmax_probs[i];
|
||||
}
|
||||
}
|
||||
|
||||
NanoDetPlus::NanoDetPlus(const std::string& model_file,
|
||||
const std::string& params_file,
|
||||
const RuntimeOption& custom_option,
|
||||
const Frontend& model_format) {
|
||||
if (model_format == Frontend::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
}
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
runtime_option.model_file = model_file;
|
||||
runtime_option.params_file = params_file;
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
bool NanoDetPlus::Initialize() {
|
||||
// parameters for preprocess
|
||||
size = {320, 320};
|
||||
padding_value = {0.0f, 0.0f, 0.0f};
|
||||
keep_ratio = false;
|
||||
downsample_strides = {8, 16, 32, 64};
|
||||
max_wh = 4096.0f;
|
||||
reg_max = 7;
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
return false;
|
||||
}
|
||||
// Check if the input shape is dynamic after Runtime already initialized.
|
||||
is_dynamic_input_ = false;
|
||||
auto shape = InputInfoOfRuntime(0).shape;
|
||||
for (int i = 0; i < shape.size(); ++i) {
|
||||
// if height or width is dynamic
|
||||
if (i >= 2 && shape[i] <= 0) {
|
||||
is_dynamic_input_ = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool NanoDetPlus::Preprocess(
|
||||
Mat* mat, FDTensor* output,
|
||||
std::map<std::string, std::array<float, 2>>* im_info) {
|
||||
// NanoDet-Plus preprocess steps
|
||||
// 1. WrapAndResize
|
||||
// 2. HWC->CHW
|
||||
// 3. Normalize or Convert (keep BGR order)
|
||||
WrapAndResize(mat, size, padding_value, keep_ratio);
|
||||
// Record output shape of preprocessed image
|
||||
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
||||
static_cast<float>(mat->Width())};
|
||||
|
||||
// Compute `result = mat * alpha + beta` directly by channel
|
||||
// Reference: /config/nanodet-plus-m-1.5x_320.yml#L89
|
||||
// from mean: [103.53, 116.28, 123.675], std: [57.375, 57.12, 58.395]
|
||||
// x' = (x - mean) / std to x'= x * alpha + beta.
|
||||
// e.g alpha[0] = 0.017429f = 1.0f / 57.375f
|
||||
// e.g beta[0] = -103.53f * 0.0174291f
|
||||
std::vector<float> alpha = {0.017429f, 0.017507f, 0.017125f};
|
||||
std::vector<float> beta = {-103.53f * 0.0174291f, -116.28f * 0.0175070f,
|
||||
-123.675f * 0.0171247f}; // BGR order
|
||||
Convert::Run(mat, alpha, beta);
|
||||
|
||||
HWC2CHW::Run(mat);
|
||||
Cast::Run(mat, "float");
|
||||
mat->ShareWithTensor(output);
|
||||
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
||||
return true;
|
||||
}
|
||||
|
||||
bool NanoDetPlus::Postprocess(
|
||||
FDTensor& infer_result, DetectionResult* result,
|
||||
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||
float conf_threshold, float nms_iou_threshold) {
|
||||
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
|
||||
result->Clear();
|
||||
result->Reserve(infer_result.shape[1]);
|
||||
if (infer_result.dtype != FDDataType::FP32) {
|
||||
FDERROR << "Only support post process with float32 data." << std::endl;
|
||||
return false;
|
||||
}
|
||||
// generate center points with dowmsample strides
|
||||
std::vector<NanoDetPlusCenterPoint> center_points;
|
||||
GenerateNanoDetPlusCenterPoints(size, downsample_strides, ¢er_points);
|
||||
|
||||
// infer_result shape might look like (1,2125,112)
|
||||
const int num_cls_reg = infer_result.shape[2]; // e.g 112
|
||||
const int num_classes = num_cls_reg - (reg_max + 1) * 4; // e.g 80
|
||||
float* data = static_cast<float*>(infer_result.Data());
|
||||
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
|
||||
float* scores = data + i * num_cls_reg;
|
||||
float* max_class_score = std::max_element(scores, scores + num_classes);
|
||||
float confidence = (*max_class_score);
|
||||
// filter boxes by conf_threshold
|
||||
if (confidence <= conf_threshold) {
|
||||
continue;
|
||||
}
|
||||
int32_t label_id = std::distance(scores, max_class_score);
|
||||
// fetch i-th center point
|
||||
float grid0 = static_cast<float>(center_points.at(i).grid0);
|
||||
float grid1 = static_cast<float>(center_points.at(i).grid1);
|
||||
float downsample_stride = static_cast<float>(center_points.at(i).stride);
|
||||
// apply gfl regression to get offsets (l,t,r,b)
|
||||
float* logits = data + i * num_cls_reg + num_classes; // 32|44...
|
||||
std::vector<float> offsets(4);
|
||||
for (size_t j = 0; j < 4; ++j) {
|
||||
GFLRegression(logits + j * (reg_max + 1), reg_max + 1, &offsets[j]);
|
||||
}
|
||||
// convert from offsets to [x1, y1, x2, y2]
|
||||
float l = offsets[0]; // left
|
||||
float t = offsets[1]; // top
|
||||
float r = offsets[2]; // right
|
||||
float b = offsets[3]; // bottom
|
||||
|
||||
float x1 = (grid0 - l) * downsample_stride; // cx - l x1
|
||||
float y1 = (grid1 - t) * downsample_stride; // cy - t y1
|
||||
float x2 = (grid0 + r) * downsample_stride; // cx + r x2
|
||||
float y2 = (grid1 + b) * downsample_stride; // cy + b y2
|
||||
|
||||
result->boxes.emplace_back(
|
||||
std::array<float, 4>{x1 + label_id * max_wh, y1 + label_id * max_wh,
|
||||
x2 + label_id * max_wh, y2 + label_id * max_wh});
|
||||
// label_id * max_wh for multi classes NMS
|
||||
result->label_ids.push_back(label_id);
|
||||
result->scores.push_back(confidence);
|
||||
}
|
||||
utils::NMS(result, nms_iou_threshold);
|
||||
|
||||
// scale the boxes to the origin image shape
|
||||
auto iter_out = im_info.find("output_shape");
|
||||
auto iter_ipt = im_info.find("input_shape");
|
||||
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
|
||||
"Cannot find input_shape or output_shape from im_info.");
|
||||
float out_h = iter_out->second[0];
|
||||
float out_w = iter_out->second[1];
|
||||
float ipt_h = iter_ipt->second[0];
|
||||
float ipt_w = iter_ipt->second[1];
|
||||
// without keep_ratio
|
||||
if (!keep_ratio) {
|
||||
// x' = (x / out_w) * ipt_w = x / (out_w / ipt_w)
|
||||
// y' = (y / out_h) * ipt_h = y / (out_h / ipt_h)
|
||||
float r_w = out_w / ipt_w;
|
||||
float r_h = out_h / ipt_h;
|
||||
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
||||
int32_t label_id = (result->label_ids)[i];
|
||||
// clip box
|
||||
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
|
||||
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
|
||||
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
|
||||
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
|
||||
result->boxes[i][0] = std::max(result->boxes[i][0] / r_w, 0.0f);
|
||||
result->boxes[i][1] = std::max(result->boxes[i][1] / r_h, 0.0f);
|
||||
result->boxes[i][2] = std::max(result->boxes[i][2] / r_w, 0.0f);
|
||||
result->boxes[i][3] = std::max(result->boxes[i][3] / r_h, 0.0f);
|
||||
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
||||
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
||||
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
||||
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
// with keep_ratio
|
||||
float r = std::min(out_h / ipt_h, out_w / ipt_w);
|
||||
float pad_h = (out_h - ipt_h * r) / 2;
|
||||
float pad_w = (out_w - ipt_w * r) / 2;
|
||||
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
||||
int32_t label_id = (result->label_ids)[i];
|
||||
// clip box
|
||||
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
|
||||
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
|
||||
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
|
||||
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
|
||||
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / r, 0.0f);
|
||||
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / r, 0.0f);
|
||||
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / r, 0.0f);
|
||||
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / r, 0.0f);
|
||||
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
||||
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
||||
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
||||
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool NanoDetPlus::Predict(cv::Mat* im, DetectionResult* result,
|
||||
float conf_threshold, float nms_iou_threshold) {
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
TIMERECORD_START(0)
|
||||
#endif
|
||||
|
||||
Mat mat(*im);
|
||||
std::vector<FDTensor> input_tensors(1);
|
||||
|
||||
std::map<std::string, std::array<float, 2>> im_info;
|
||||
|
||||
// Record the shape of image and the shape of preprocessed image
|
||||
im_info["input_shape"] = {static_cast<float>(mat.Height()),
|
||||
static_cast<float>(mat.Width())};
|
||||
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
TIMERECORD_END(0, "Preprocess")
|
||||
TIMERECORD_START(1)
|
||||
#endif
|
||||
|
||||
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
std::vector<FDTensor> output_tensors;
|
||||
if (!Infer(input_tensors, &output_tensors)) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
TIMERECORD_END(1, "Inference")
|
||||
TIMERECORD_START(2)
|
||||
#endif
|
||||
|
||||
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
|
||||
nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
TIMERECORD_END(2, "Postprocess")
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace rangilyu
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
101
fastdeploy/vision/rangilyu/nanodet_plus.h
Normal file
101
fastdeploy/vision/rangilyu/nanodet_plus.h
Normal file
@@ -0,0 +1,101 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "fastdeploy/fastdeploy_model.h"
|
||||
#include "fastdeploy/vision/common/processors/transform.h"
|
||||
#include "fastdeploy/vision/common/result.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
namespace vision {
|
||||
|
||||
namespace rangilyu {
|
||||
|
||||
class FASTDEPLOY_DECL NanoDetPlus : public FastDeployModel {
|
||||
public:
|
||||
// 当model_format为ONNX时,无需指定params_file
|
||||
// 当model_format为Paddle时,则需同时指定model_file & params_file
|
||||
NanoDetPlus(const std::string& model_file,
|
||||
const std::string& params_file = "",
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const Frontend& model_format = Frontend::ONNX);
|
||||
|
||||
// 定义模型的名称
|
||||
std::string ModelName() const { return "RangiLyu/nanodet"; }
|
||||
|
||||
// 模型预测接口,即用户调用的接口
|
||||
// im 为用户的输入数据,目前对于CV均定义为cv::Mat
|
||||
// result 为模型预测的输出结构体
|
||||
// conf_threshold 为后处理的参数
|
||||
// nms_iou_threshold 为后处理的参数
|
||||
virtual bool Predict(cv::Mat* im, DetectionResult* result,
|
||||
float conf_threshold = 0.35f,
|
||||
float nms_iou_threshold = 0.5f);
|
||||
|
||||
// 以下为模型在预测时的一些参数,基本是前后处理所需
|
||||
// 用户在创建模型后,可根据模型的要求,以及自己的需求
|
||||
// 对参数进行修改
|
||||
// tuple of input size (width, height), e.g (320, 320)
|
||||
std::vector<int> size;
|
||||
// padding value, size should be same with Channels
|
||||
std::vector<float> padding_value;
|
||||
// keep aspect ratio or not when perform resize operation.
|
||||
// This option is set as `false` by default in NanoDet-Plus.
|
||||
bool keep_ratio;
|
||||
// downsample strides for NanoDet-Plus to generate anchors, will
|
||||
// take (8, 16, 32, 64) as default values.
|
||||
std::vector<int> downsample_strides;
|
||||
// for offseting the boxes by classes when using NMS, default 4096.
|
||||
float max_wh;
|
||||
// reg_max for GFL regression, default 7
|
||||
int reg_max;
|
||||
|
||||
private:
|
||||
// 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作
|
||||
bool Initialize();
|
||||
|
||||
// 输入图像预处理操作
|
||||
// Mat为FastDeploy定义的数据结构
|
||||
// FDTensor为预处理后的Tensor数据,传给后端进行推理
|
||||
// im_info为预处理过程保存的数据,在后处理中需要用到
|
||||
bool Preprocess(Mat* mat, FDTensor* output,
|
||||
std::map<std::string, std::array<float, 2>>* im_info);
|
||||
|
||||
// 后端推理结果后处理,输出给用户
|
||||
// infer_result 为后端推理后的输出Tensor
|
||||
// result 为模型预测的结果
|
||||
// im_info 为预处理记录的信息,后处理用于还原box
|
||||
// conf_threshold 后处理时过滤box的置信度阈值
|
||||
// nms_iou_threshold 后处理时NMS设定的iou阈值
|
||||
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
|
||||
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||
float conf_threshold, float nms_iou_threshold);
|
||||
|
||||
// 查看输入是否为动态维度的 不建议直接使用 不同模型的逻辑可能不一致
|
||||
bool IsDynamicInput() const { return is_dynamic_input_; }
|
||||
|
||||
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape
|
||||
// or not.)
|
||||
// RangiLyu/nanodet official 'export_onnx.py' script will export static ONNX
|
||||
// by default.
|
||||
// This value will auto check by fastdeploy after the internal Runtime
|
||||
// initialized.
|
||||
bool is_dynamic_input_;
|
||||
};
|
||||
|
||||
} // namespace rangilyu
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
41
fastdeploy/vision/rangilyu/rangilyu_pybind.cc
Normal file
41
fastdeploy/vision/rangilyu/rangilyu_pybind.cc
Normal file
@@ -0,0 +1,41 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindRangiLyu(pybind11::module& m) {
|
||||
auto rangilyu_module =
|
||||
m.def_submodule("rangilyu", "https://github.com/RangiLyu/nanodet");
|
||||
pybind11::class_<vision::rangilyu::NanoDetPlus, FastDeployModel>(
|
||||
rangilyu_module, "NanoDetPlus")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption, Frontend>())
|
||||
.def("predict",
|
||||
[](vision::rangilyu::NanoDetPlus& self, pybind11::array& data,
|
||||
float conf_threshold, float nms_iou_threshold) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::DetectionResult res;
|
||||
self.Predict(&mat, &res, conf_threshold, nms_iou_threshold);
|
||||
return res;
|
||||
})
|
||||
.def_readwrite("size", &vision::rangilyu::NanoDetPlus::size)
|
||||
.def_readwrite("padding_value",
|
||||
&vision::rangilyu::NanoDetPlus::padding_value)
|
||||
.def_readwrite("keep_ratio", &vision::rangilyu::NanoDetPlus::keep_ratio)
|
||||
.def_readwrite("downsample_strides",
|
||||
&vision::rangilyu::NanoDetPlus::downsample_strides)
|
||||
.def_readwrite("max_wh", &vision::rangilyu::NanoDetPlus::max_wh)
|
||||
.def_readwrite("reg_max", &vision::rangilyu::NanoDetPlus::reg_max);
|
||||
}
|
||||
} // namespace fastdeploy
|
@@ -23,6 +23,7 @@ void BindPPSeg(pybind11::module& m);
|
||||
void BindUltralytics(pybind11::module& m);
|
||||
void BindMeituan(pybind11::module& m);
|
||||
void BindMegvii(pybind11::module& m);
|
||||
void BindRangiLyu(pybind11::module& m);
|
||||
#ifdef ENABLE_VISION_VISUALIZE
|
||||
void BindVisualize(pybind11::module& m);
|
||||
#endif
|
||||
@@ -56,6 +57,7 @@ void BindVision(pybind11::module& m) {
|
||||
BindWongkinyiu(m);
|
||||
BindMeituan(m);
|
||||
BindMegvii(m);
|
||||
BindRangiLyu(m);
|
||||
#ifdef ENABLE_VISION_VISUALIZE
|
||||
BindVisualize(m);
|
||||
#endif
|
||||
|
46
model_zoo/vision/nanodet_plus/README.md
Normal file
46
model_zoo/vision/nanodet_plus/README.md
Normal file
@@ -0,0 +1,46 @@
|
||||
# NanoDetPlus部署示例
|
||||
|
||||
当前支持模型版本为:[NanoDetPlus v1.0.0-alpha-1](https://github.com/RangiLyu/nanodet/releases/tag/v1.0.0-alpha-1)
|
||||
|
||||
本文档说明如何进行[NanoDetPlus](https://github.com/RangiLyu/nanodet)的快速部署推理。本目录结构如下
|
||||
```
|
||||
.
|
||||
├── cpp # C++ 代码目录
|
||||
│ ├── CMakeLists.txt # C++ 代码编译CMakeLists文件
|
||||
│ ├── README.md # C++ 代码编译部署文档
|
||||
│ └── nanodet_plus.cc # C++ 示例代码
|
||||
├── README.md # YOLOX 部署文档
|
||||
└── nanodet_plus.py # Python示例代码
|
||||
```
|
||||
|
||||
## 安装FastDeploy
|
||||
|
||||
使用如下命令安装FastDeploy,注意到此处安装的是`vision-cpu`,也可根据需求安装`vision-gpu`
|
||||
```
|
||||
# 安装fastdeploy-python工具
|
||||
pip install fastdeploy-python
|
||||
|
||||
# 安装vision-cpu模块
|
||||
fastdeploy install vision-cpu
|
||||
```
|
||||
|
||||
## Python部署
|
||||
|
||||
执行如下代码即会自动下载NanoDetPlus模型和测试图片
|
||||
```
|
||||
python nanodet_plus.py
|
||||
```
|
||||
|
||||
执行完成后会将可视化结果保存在本地`vis_result.jpg`,同时输出检测结果如下
|
||||
```
|
||||
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
|
||||
5.710144,220.634033, 807.854370, 724.089111, 0.825635, 5
|
||||
45.646439,393.694061, 229.267044, 903.998413, 0.818263, 0
|
||||
218.289322,402.268829, 342.083252, 861.766479, 0.709301, 0
|
||||
698.587036,325.627197, 809.000000, 876.990967, 0.630235, 0
|
||||
```
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [C++部署](./cpp/README.md)
|
||||
- [NanoDetPlus API文档](./api.md)
|
71
model_zoo/vision/nanodet_plus/api.md
Normal file
71
model_zoo/vision/nanodet_plus/api.md
Normal file
@@ -0,0 +1,71 @@
|
||||
# NanoDetPlus API说明
|
||||
|
||||
## Python API
|
||||
|
||||
### NanoDetPlus类
|
||||
```
|
||||
fastdeploy.vision.rangilyu.NanoDetPlus(model_file, params_file=None, runtime_option=None, model_format=fd.Frontend.ONNX)
|
||||
```
|
||||
NanoDetPlus模型加载和初始化,当model_format为`fd.Frontend.ONNX`时,只需提供model_file,如`nanodet-plus-m_320.onnx`;当model_format为`fd.Frontend.PADDLE`时,则需同时提供model_file和params_file。
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(Frontend): 模型格式
|
||||
|
||||
#### predict函数
|
||||
> ```
|
||||
> NanoDetPlus.predict(image_data, conf_threshold=0.35, nms_iou_threshold=0.5)
|
||||
> ```
|
||||
> 模型预测结口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
> > * **conf_threshold**(float): 检测框置信度过滤阈值
|
||||
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
|
||||
|
||||
示例代码参考[nanodet_plus.py](./nanodet_plus.py)
|
||||
|
||||
|
||||
## C++ API
|
||||
|
||||
### NanoDetPlus类
|
||||
```
|
||||
fastdeploy::vision::rangilyu::NanoDetPlus(
|
||||
const string& model_file,
|
||||
const string& params_file = "",
|
||||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||
const Frontend& model_format = Frontend::ONNX)
|
||||
```
|
||||
NanoDetPlus模型加载和初始化,当model_format为`Frontend::ONNX`时,只需提供model_file,如`nanodet-plus-m_320.onnx`;当model_format为`Frontend::PADDLE`时,则需同时提供model_file和params_file。
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(Frontend): 模型格式
|
||||
|
||||
#### Predict函数
|
||||
> ```
|
||||
> NanoDetPlus::Predict(cv::Mat* im, DetectionResult* result,
|
||||
> float conf_threshold = 0.35,
|
||||
> float nms_iou_threshold = 0.5)
|
||||
> ```
|
||||
> 模型预测接口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||
> > * **result**: 检测结果,包括检测框,各个框的置信度
|
||||
> > * **conf_threshold**: 检测框置信度过滤阈值
|
||||
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
|
||||
|
||||
示例代码参考[cpp/nanodet_plus.cc](cpp/nanodet_plus.cc)
|
||||
|
||||
## 其它API使用
|
||||
|
||||
- [模型部署RuntimeOption配置](../../../docs/api/runtime_option.md)
|
17
model_zoo/vision/nanodet_plus/cpp/CMakeLists.txt
Normal file
17
model_zoo/vision/nanodet_plus/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,17 @@
|
||||
PROJECT(nanodet_plus_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 3.16)
|
||||
|
||||
# 在低版本ABI环境中,通过如下代码进行兼容性编译
|
||||
# add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
set(FASTDEPLOY_INSTALL_DIR ${PROJECT_SOURCE_DIR}/fastdeploy-linux-x64-0.0.3/)
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(nanodet_plus_demo ${PROJECT_SOURCE_DIR}/nanodet_plus.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(nanodet_plus_demo ${FASTDEPLOY_LIBS})
|
30
model_zoo/vision/nanodet_plus/cpp/README.md
Normal file
30
model_zoo/vision/nanodet_plus/cpp/README.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# 编译NanoDetPlus示例
|
||||
|
||||
当前支持模型版本为:[NanoDetPlus v1.0.0-alpha-1](https://github.com/RangiLyu/nanodet/releases/tag/v1.0.0-alpha-1)
|
||||
|
||||
```
|
||||
# 下载和解压预测库
|
||||
wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz
|
||||
tar xvf fastdeploy-linux-x64-0.0.3.tgz
|
||||
|
||||
# 编译示例代码
|
||||
mkdir build & cd build
|
||||
cmake ..
|
||||
make -j
|
||||
|
||||
# 下载模型和图片
|
||||
wget https://github.com/RangiLyu/nanodet/releases/download/v1.0.0-alpha-1/nanodet-plus-m_320.onnx
|
||||
wget https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg
|
||||
|
||||
# 执行
|
||||
./nanodet_plus_demo
|
||||
```
|
||||
|
||||
执行完后可视化的结果保存在本地`vis_result.jpg`,同时会将检测框输出在终端,如下所示
|
||||
```
|
||||
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
|
||||
5.710144,220.634033, 807.854370, 724.089111, 0.825635, 5
|
||||
45.646439,393.694061, 229.267044, 903.998413, 0.818263, 0
|
||||
218.289322,402.268829, 342.083252, 861.766479, 0.709301, 0
|
||||
698.587036,325.627197, 809.000000, 876.990967, 0.630235, 0
|
||||
```
|
40
model_zoo/vision/nanodet_plus/cpp/nanodet_plus.cc
Normal file
40
model_zoo/vision/nanodet_plus/cpp/nanodet_plus.cc
Normal file
@@ -0,0 +1,40 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
int main() {
|
||||
namespace vis = fastdeploy::vision;
|
||||
auto model = vis::rangilyu::NanoDetPlus("nanodet-plus-m_320.onnx");
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Init Failed." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
cv::Mat im = cv::imread("bus.jpg");
|
||||
cv::Mat vis_im = im.clone();
|
||||
|
||||
vis::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Prediction Failed." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// 输出预测框结果
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
// 可视化预测结果
|
||||
vis::Visualize::VisDetection(&vis_im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
return 0;
|
||||
}
|
23
model_zoo/vision/nanodet_plus/nanodet_plus.py
Normal file
23
model_zoo/vision/nanodet_plus/nanodet_plus.py
Normal file
@@ -0,0 +1,23 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
|
||||
# 下载模型和测试图片
|
||||
model_url = "https://github.com/RangiLyu/nanodet/releases/download/v1.0.0-alpha-1/nanodet-plus-m_320.onnx"
|
||||
test_jpg_url = "https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg"
|
||||
fd.download(model_url, ".", show_progress=True)
|
||||
fd.download(test_jpg_url, ".", show_progress=True)
|
||||
|
||||
# 加载模型
|
||||
model = fd.vision.rangilyu.NanoDetPlus("nanodet-plus-m_320.onnx")
|
||||
|
||||
# 预测图片
|
||||
im = cv2.imread("bus.jpg")
|
||||
result = model.predict(im, conf_threshold=0.35, nms_iou_threshold=0.5)
|
||||
|
||||
# 可视化结果
|
||||
fd.vision.visualize.vis_detection(im, result)
|
||||
cv2.imwrite("vis_result.jpg", im)
|
||||
|
||||
# 输出预测结果
|
||||
print(result)
|
||||
print(model.runtime_option)
|
Reference in New Issue
Block a user