Imporve Ascend docs

This commit is contained in:
yunyaoXYY
2023-01-03 12:01:36 +00:00
parent e0a669a2e0
commit e045d19936
4 changed files with 12 additions and 16 deletions

View File

@@ -94,6 +94,11 @@ python setup.py bdist_wheel
#编译完成后,请用户自行安装当前目录的dist文件夹内的whl包. #编译完成后,请用户自行安装当前目录的dist文件夹内的whl包.
``` ```
## 五.昇腾部署时开启FlyCV
[FlyCV](https://github.com/PaddlePaddle/FlyCV) 是一款高性能计算机图像处理库, 针对ARM架构做了很多优化, 相比其他图像处理库性能更为出色.
FastDeploy现在已经集成FlyCV, 用户可以在支持的硬件平台上使用FlyCV, 实现模型端到端推理性能的加速.
模型端到端推理中, 预处理和后处理阶段为CPU计算, 当用户使用ARM CPU + 昇腾的硬件平台时, 我们推荐用户使用FlyCV, 可以实现端到端的推理性能加速, 详见[FLyCV使用文档](./boost_cv_by_flycv.md)
- 华为昇腾NPU 上使用C++部署 PaddleClas 分类模型请参考:[PaddleClas 华为升腾NPU C++ 部署示例](../../../examples/vision/classification/paddleclas/ascend/cpp/README.md) - 华为昇腾NPU 上使用C++部署 PaddleClas 分类模型请参考:[PaddleClas 华为升腾NPU C++ 部署示例](../../../examples/vision/classification/paddleclas/ascend/cpp/README.md)
- 华为昇腾NPU 上使用Python部署 PaddleClas 分类模型请参考:[PaddleClas 华为升腾NPU Python 部署示例](../../../examples/vision/classification/paddleclas/ascend/python/README.md) - 华为昇腾NPU 上使用Python部署 PaddleClas 分类模型请参考:[PaddleClas 华为升腾NPU Python 部署示例](../../../examples/vision/classification/paddleclas/ascend/python/README.md)

View File

@@ -19,11 +19,3 @@ source fastdeploy-ascend/fastdeploy_init.sh
``` ```
注意此命令执行后仅在当前的命令环境中生效(切换一个新的终端窗口,或关闭窗口重新打开后会无效),如若需要在系统中持续生效,可将这些环境变量加入到`~/.bashrc`文件中。 注意此命令执行后仅在当前的命令环境中生效(切换一个新的终端窗口,或关闭窗口重新打开后会无效),如若需要在系统中持续生效,可将这些环境变量加入到`~/.bashrc`文件中。
# 昇腾部署时开启FlyCV
[FlyCV](https://github.com/PaddlePaddle/FlyCV) 是一款高性能计算机图像处理库, 针对ARM架构做了很多优化, 相比其他图像处理库性能更为出色.
FastDeploy现在已经集成FlyCV, 用户可以在支持的硬件平台上使用FlyCV, 实现模型端到端推理性能的加速.
模型端到端推理中, 预处理和后处理阶段为CPU计算, 当用户使用ARM CPU + 昇腾的硬件平台时, 我们推荐用户使用FlyCV, 可以实现端到端的推理性能加速, 详见以下使用文档.
- [FLyCV使用文档](./boost_cv_by_flycv.md)

View File

@@ -93,6 +93,13 @@ python setup.py bdist_wheel
#After the compilation is complete, please install the whl package in the dist folder of the current directory. #After the compilation is complete, please install the whl package in the dist folder of the current directory.
``` ```
## Enable FlyCV for Ascend deployment
[FlyCV](https://github.com/PaddlePaddle/FlyCV) is a high performance computer image processing library, providing better performance than other image processing libraries, especially in the ARM architecture.
FastDeploy is now integrated with FlyCV, allowing users to use FlyCV on supported hardware platforms to accelerate model end-to-end inference performance.
In end-to-end model inference, the pre-processing and post-processing phases are CPU computation, we recommend using FlyCV for end-to-end inference performance acceleration when you are using ARM CPU + Ascend hardware platform. See [Enable FlyCV](./boost_cv_by_flycv.md) documentation for details.
Deploying PaddleClas Classification Model on Huawei Ascend NPU using C++ please refer to: [PaddleClas Huawei Ascend NPU C++ Deployment Example](../../../examples/vision/classification/paddleclas/ascend/cpp/README.md) Deploying PaddleClas Classification Model on Huawei Ascend NPU using C++ please refer to: [PaddleClas Huawei Ascend NPU C++ Deployment Example](../../../examples/vision/classification/paddleclas/ascend/cpp/README.md)
Deploying PaddleClas classification model on Huawei Ascend NPU using Python please refer to: [PaddleClas Huawei Ascend NPU Python Deployment Example](../../../examples/vision/classification/paddleclas/ascend/python/README.md) Deploying PaddleClas classification model on Huawei Ascend NPU using Python please refer to: [PaddleClas Huawei Ascend NPU Python Deployment Example](../../../examples/vision/classification/paddleclas/ascend/python/README.md)

View File

@@ -19,11 +19,3 @@ source fastdeploy-ascend/fastdeploy_init.sh
``` ```
Note that this command only takes effect in the current command environment after execution (switching to a new terminal window, or closing the window and reopening it will not work), if you need to keep it in effect on the system, add these environment variables to the `~/.bashrc` file. Note that this command only takes effect in the current command environment after execution (switching to a new terminal window, or closing the window and reopening it will not work), if you need to keep it in effect on the system, add these environment variables to the `~/.bashrc` file.
# Enable FlyCV for Ascend deployment
[FlyCV](https://github.com/PaddlePaddle/FlyCV) is a high performance computer image processing library, providing better performance than other image processing libraries, especially in the ARM architecture.
FastDeploy is now integrated with FlyCV, allowing users to use FlyCV on supported hardware platforms to accelerate model end-to-end inference performance.
In end-to-end model inference, the pre-processing and post-processing phases are CPU computation, we recommend using FlyCV for end-to-end inference performance acceleration when you are using ARM CPU + Ascend hardware platform. See the following documentation for details.
- [Enable FlyCV](./boost_cv_by_flycv.md)