mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
add yolov6 c++ and yolov6 pybind (#16)
* update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -10,3 +10,5 @@ build-debug.sh
|
|||||||
fastdeploy.egg-info
|
fastdeploy.egg-info
|
||||||
.setuptools-cmake-build
|
.setuptools-cmake-build
|
||||||
fastdeploy/version.py
|
fastdeploy/version.py
|
||||||
|
fastdeploy/LICENSE*
|
||||||
|
fastdeploy/ThirdPartyNotices*
|
@@ -38,6 +38,9 @@ option(ENABLE_VISION_VISUALIZE "if to enable visualize vision model result toolb
|
|||||||
option(ENABLE_OPENCV_CUDA "if to enable opencv with cuda, this will allow process image with GPU." OFF)
|
option(ENABLE_OPENCV_CUDA "if to enable opencv with cuda, this will allow process image with GPU." OFF)
|
||||||
option(ENABLE_DEBUG "if to enable print debug information, this may reduce performance." OFF)
|
option(ENABLE_DEBUG "if to enable print debug information, this may reduce performance." OFF)
|
||||||
|
|
||||||
|
# Whether to build fastdeply with vision/text/... examples, only for testings.
|
||||||
|
option(WTIH_VISION_EXAMPLES "Whether to build fastdeply with vision examples" ON)
|
||||||
|
|
||||||
if(ENABLE_DEBUG)
|
if(ENABLE_DEBUG)
|
||||||
add_definitions(-DFASTDEPLOY_DEBUG)
|
add_definitions(-DFASTDEPLOY_DEBUG)
|
||||||
endif()
|
endif()
|
||||||
@@ -50,6 +53,13 @@ option(BUILD_FASTDEPLOY_PYTHON "if build python lib for fastdeploy." OFF)
|
|||||||
include_directories(${PROJECT_SOURCE_DIR})
|
include_directories(${PROJECT_SOURCE_DIR})
|
||||||
include_directories(${CMAKE_CURRENT_BINARY_DIR})
|
include_directories(${CMAKE_CURRENT_BINARY_DIR})
|
||||||
|
|
||||||
|
if (WTIH_VISION_EXAMPLES AND EXISTS ${PROJECT_SOURCE_DIR}/examples)
|
||||||
|
# ENABLE_VISION and ENABLE_VISION_VISUALIZE must be ON if enable vision examples.
|
||||||
|
message(STATUS "Found WTIH_VISION_EXAMPLES ON, so, force ENABLE_VISION and ENABLE_VISION_VISUALIZE ON")
|
||||||
|
set(ENABLE_VISION ON CACHE BOOL "force to enable vision models usage" FORCE)
|
||||||
|
set(ENABLE_VISION_VISUALIZE ON CACHE BOOL "force to enable visualize vision model result toolbox" FORCE)
|
||||||
|
endif()
|
||||||
|
|
||||||
add_definitions(-DFASTDEPLOY_LIB)
|
add_definitions(-DFASTDEPLOY_LIB)
|
||||||
file(GLOB_RECURSE ALL_DEPLOY_SRCS ${PROJECT_SOURCE_DIR}/fastdeploy/*.cc)
|
file(GLOB_RECURSE ALL_DEPLOY_SRCS ${PROJECT_SOURCE_DIR}/fastdeploy/*.cc)
|
||||||
file(GLOB_RECURSE DEPLOY_ORT_SRCS ${PROJECT_SOURCE_DIR}/fastdeploy/backends/ort/*.cc)
|
file(GLOB_RECURSE DEPLOY_ORT_SRCS ${PROJECT_SOURCE_DIR}/fastdeploy/backends/ort/*.cc)
|
||||||
@@ -170,6 +180,13 @@ endif()
|
|||||||
set_target_properties(fastdeploy PROPERTIES VERSION ${FASTDEPLOY_VERSION})
|
set_target_properties(fastdeploy PROPERTIES VERSION ${FASTDEPLOY_VERSION})
|
||||||
target_link_libraries(fastdeploy ${DEPEND_LIBS})
|
target_link_libraries(fastdeploy ${DEPEND_LIBS})
|
||||||
|
|
||||||
|
# add examples after prepare include paths for third-parties
|
||||||
|
if (WTIH_VISION_EXAMPLES AND EXISTS ${PROJECT_SOURCE_DIR}/examples)
|
||||||
|
add_definitions(-DWTIH_VISION_EXAMPLES)
|
||||||
|
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/examples/bin)
|
||||||
|
add_subdirectory(examples)
|
||||||
|
endif()
|
||||||
|
|
||||||
include(external/summary.cmake)
|
include(external/summary.cmake)
|
||||||
fastdeploy_summary()
|
fastdeploy_summary()
|
||||||
|
|
||||||
|
8
examples/.gitignore
vendored
Normal file
8
examples/.gitignore
vendored
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
*.jpg
|
||||||
|
*.png
|
||||||
|
*.jpeg
|
||||||
|
*.onnx
|
||||||
|
*.engine
|
||||||
|
*.pd*
|
||||||
|
*.nb
|
||||||
|
bin
|
22
examples/CMakeLists.txt
Normal file
22
examples/CMakeLists.txt
Normal file
@@ -0,0 +1,22 @@
|
|||||||
|
function(add_fastdeploy_executable field url model)
|
||||||
|
# temp target name/file var in function scope
|
||||||
|
set(TEMP_TARGET_FILE ${PROJECT_SOURCE_DIR}/examples/${field}/${url}_${model}.cc)
|
||||||
|
set(TEMP_TARGET_NAME ${field}_${url}_${model})
|
||||||
|
if (EXISTS ${TEMP_TARGET_FILE} AND TARGET fastdeploy)
|
||||||
|
add_executable(${TEMP_TARGET_NAME} ${TEMP_TARGET_FILE})
|
||||||
|
target_link_libraries(${TEMP_TARGET_NAME} PUBLIC fastdeploy)
|
||||||
|
message(STATUS "Found source file: [${field}/${url}_${model}.cc], ADD!!! fastdeploy executable: [${TEMP_TARGET_NAME}] !")
|
||||||
|
else ()
|
||||||
|
message(WARNING "Can not found source file: [${field}/${url}_${model}.cc], SKIP!!! fastdeploy executable: [${TEMP_TARGET_NAME}] !")
|
||||||
|
endif()
|
||||||
|
unset(TEMP_TARGET_FILE)
|
||||||
|
unset(TEMP_TARGET_NAME)
|
||||||
|
endfunction()
|
||||||
|
|
||||||
|
# vision examples
|
||||||
|
if (WTIH_VISION_EXAMPLES)
|
||||||
|
add_fastdeploy_executable(vision ultralytics yolov5)
|
||||||
|
add_fastdeploy_executable(vision meituan yolov6)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
# other examples ...
|
11
examples/resources/.gitignore
vendored
Normal file
11
examples/resources/.gitignore
vendored
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
images/*.jpg
|
||||||
|
images/*.jpeg
|
||||||
|
images/*.png
|
||||||
|
models/*.onnx
|
||||||
|
models/*.pd*
|
||||||
|
models/*.engine
|
||||||
|
models/*.trt
|
||||||
|
models/*.nb
|
||||||
|
outputs/*.jpg
|
||||||
|
outputs/*.jpeg
|
||||||
|
outputs/*.png
|
3
examples/resources/images/.gitignore
vendored
Normal file
3
examples/resources/images/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
*.jpg
|
||||||
|
*.jpeg
|
||||||
|
*.png
|
5
examples/resources/models/.gitignore
vendored
Normal file
5
examples/resources/models/.gitignore
vendored
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
*.onnx
|
||||||
|
*.engine
|
||||||
|
*.pd*
|
||||||
|
*.nb
|
||||||
|
*.trt
|
3
examples/resources/outputs/.gitignore
vendored
Normal file
3
examples/resources/outputs/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
*.jpg
|
||||||
|
*.png
|
||||||
|
*.jpeg
|
53
examples/vision/meituan_yolov6.cc
Normal file
53
examples/vision/meituan_yolov6.cc
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
namespace vis = fastdeploy::vision;
|
||||||
|
|
||||||
|
std::string model_file = "../resources/models/yolov6s.onnx";
|
||||||
|
std::string img_path = "../resources/images/bus.jpg";
|
||||||
|
std::string vis_path = "../resources/outputs/meituan_yolov6_vis_result.jpg";
|
||||||
|
|
||||||
|
auto model = vis::meituan::YOLOv6(model_file);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Init Failed." << std::endl;
|
||||||
|
return -1;
|
||||||
|
} else {
|
||||||
|
std::cout << "Init Done! Dynamic Mode: "
|
||||||
|
<< model.IsDynamicShape() << std::endl;
|
||||||
|
}
|
||||||
|
model.EnableDebug();
|
||||||
|
|
||||||
|
cv::Mat im = cv::imread(img_path);
|
||||||
|
cv::Mat vis_im = im.clone();
|
||||||
|
|
||||||
|
vis::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
|
return -1;
|
||||||
|
} else {
|
||||||
|
std::cout << "Prediction Done!" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 输出预测框结果
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
|
||||||
|
// 可视化预测结果
|
||||||
|
vis::Visualize::VisDetection(&vis_im, res);
|
||||||
|
cv::imwrite(vis_path, vis_im);
|
||||||
|
std::cout << "Detect Done! Saved: " << vis_path << std::endl;
|
||||||
|
return 0;
|
||||||
|
}
|
52
examples/vision/ultralytics_yolov5.cc
Normal file
52
examples/vision/ultralytics_yolov5.cc
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
namespace vis = fastdeploy::vision;
|
||||||
|
|
||||||
|
std::string model_file = "../resources/models/yolov5s.onnx";
|
||||||
|
std::string img_path = "../resources/images/bus.jpg";
|
||||||
|
std::string vis_path = "../resources/outputs/ultralytics_yolov5_vis_result.jpg";
|
||||||
|
|
||||||
|
auto model = vis::ultralytics::YOLOv5(model_file);
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Init Failed! Model: " << model_file << std::endl;
|
||||||
|
return -1;
|
||||||
|
} else {
|
||||||
|
std::cout << "Init Done! Model:" << model_file << std::endl;
|
||||||
|
}
|
||||||
|
model.EnableDebug();
|
||||||
|
|
||||||
|
cv::Mat im = cv::imread(img_path);
|
||||||
|
cv::Mat vis_im = im.clone();
|
||||||
|
|
||||||
|
vis::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
|
return -1;
|
||||||
|
} else {
|
||||||
|
std::cout << "Prediction Done!" << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 输出预测框结果
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
|
||||||
|
// 可视化预测结果
|
||||||
|
vis::Visualize::VisDetection(&vis_im, res);
|
||||||
|
cv::imwrite(vis_path, vis_im);
|
||||||
|
std::cout << "Detect Done! Saved: " << vis_path << std::endl;
|
||||||
|
return 0;
|
||||||
|
}
|
@@ -18,6 +18,7 @@ import shutil
|
|||||||
import requests
|
import requests
|
||||||
import time
|
import time
|
||||||
import zipfile
|
import zipfile
|
||||||
|
import tarfile
|
||||||
import hashlib
|
import hashlib
|
||||||
import tqdm
|
import tqdm
|
||||||
import logging
|
import logging
|
||||||
|
@@ -51,5 +51,5 @@ class FastDeployModel:
|
|||||||
@property
|
@property
|
||||||
def initialized(self):
|
def initialized(self):
|
||||||
if self._model is None:
|
if self._model is None:
|
||||||
return false
|
return False
|
||||||
return self._model.initialized()
|
return self._model.initialized()
|
||||||
|
@@ -17,6 +17,7 @@
|
|||||||
#ifdef ENABLE_VISION
|
#ifdef ENABLE_VISION
|
||||||
#include "fastdeploy/vision/ppcls/model.h"
|
#include "fastdeploy/vision/ppcls/model.h"
|
||||||
#include "fastdeploy/vision/ultralytics/yolov5.h"
|
#include "fastdeploy/vision/ultralytics/yolov5.h"
|
||||||
|
#include "fastdeploy/vision/meituan/yolov6.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#include "fastdeploy/vision/visualize/visualize.h"
|
#include "fastdeploy/vision/visualize/visualize.h"
|
||||||
|
@@ -16,4 +16,5 @@ from __future__ import absolute_import
|
|||||||
from . import evaluation
|
from . import evaluation
|
||||||
from . import ppcls
|
from . import ppcls
|
||||||
from . import ultralytics
|
from . import ultralytics
|
||||||
|
from . import meituan
|
||||||
from . import visualize
|
from . import visualize
|
||||||
|
120
fastdeploy/vision/meituan/__init__.py
Normal file
120
fastdeploy/vision/meituan/__init__.py
Normal file
@@ -0,0 +1,120 @@
|
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import absolute_import
|
||||||
|
import logging
|
||||||
|
from ... import FastDeployModel, Frontend
|
||||||
|
from ... import fastdeploy_main as C
|
||||||
|
|
||||||
|
|
||||||
|
class YOLOv6(FastDeployModel):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file="",
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=Frontend.ONNX):
|
||||||
|
# 调用基函数进行backend_option的初始化
|
||||||
|
# 初始化后的option保存在self._runtime_option
|
||||||
|
super(YOLOv6, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
self._model = C.vision.meituan.YOLOv6(
|
||||||
|
model_file, params_file, self._runtime_option, model_format)
|
||||||
|
# 通过self.initialized判断整个模型的初始化是否成功
|
||||||
|
assert self.initialized, "YOLOv6 initialize failed."
|
||||||
|
|
||||||
|
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
|
||||||
|
return self._model.predict(input_image, conf_threshold,
|
||||||
|
nms_iou_threshold)
|
||||||
|
|
||||||
|
# BOOL: 查看输入的模型是否为动态维度的
|
||||||
|
def is_dynamic_shape(self):
|
||||||
|
return self._model.is_dynamic_shape()
|
||||||
|
|
||||||
|
# 一些跟YOLOv6模型有关的属性封装
|
||||||
|
# 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持)
|
||||||
|
@property
|
||||||
|
def size(self):
|
||||||
|
return self._model.size
|
||||||
|
|
||||||
|
@property
|
||||||
|
def padding_value(self):
|
||||||
|
return self._model.padding_value
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_no_pad(self):
|
||||||
|
return self._model.is_no_pad
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_mini_pad(self):
|
||||||
|
return self._model.is_mini_pad
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_scale_up(self):
|
||||||
|
return self._model.is_scale_up
|
||||||
|
|
||||||
|
@property
|
||||||
|
def stride(self):
|
||||||
|
return self._model.stride
|
||||||
|
|
||||||
|
@property
|
||||||
|
def max_wh(self):
|
||||||
|
return self._model.max_wh
|
||||||
|
|
||||||
|
@size.setter
|
||||||
|
def size(self, wh):
|
||||||
|
assert isinstance(wh, [list, tuple]),\
|
||||||
|
"The value to set `size` must be type of tuple or list."
|
||||||
|
assert len(wh) == 2,\
|
||||||
|
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||||
|
len(wh))
|
||||||
|
self._model.size = wh
|
||||||
|
|
||||||
|
@padding_value.setter
|
||||||
|
def padding_value(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value,
|
||||||
|
list), "The value to set `padding_value` must be type of list."
|
||||||
|
self._model.padding_value = value
|
||||||
|
|
||||||
|
@is_no_pad.setter
|
||||||
|
def is_no_pad(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value, bool), "The value to set `is_no_pad` must be type of bool."
|
||||||
|
self._model.is_no_pad = value
|
||||||
|
|
||||||
|
@is_mini_pad.setter
|
||||||
|
def is_mini_pad(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value,
|
||||||
|
bool), "The value to set `is_mini_pad` must be type of bool."
|
||||||
|
self._model.is_mini_pad = value
|
||||||
|
|
||||||
|
@is_scale_up.setter
|
||||||
|
def is_scale_up(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value,
|
||||||
|
bool), "The value to set `is_scale_up` must be type of bool."
|
||||||
|
self._model.is_scale_up = value
|
||||||
|
|
||||||
|
@stride.setter
|
||||||
|
def stride(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value, int), "The value to set `stride` must be type of int."
|
||||||
|
self._model.stride = value
|
||||||
|
|
||||||
|
@max_wh.setter
|
||||||
|
def max_wh(self, value):
|
||||||
|
assert isinstance(
|
||||||
|
value, float), "The value to set `max_wh` must be type of float."
|
||||||
|
self._model.max_wh = value
|
45
fastdeploy/vision/meituan/meituan_pybind.cc
Normal file
45
fastdeploy/vision/meituan/meituan_pybind.cc
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/pybind/main.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
void BindMeituan(pybind11::module& m) {
|
||||||
|
auto meituan_module =
|
||||||
|
m.def_submodule("meituan", "https://github.com/meituan/YOLOv6");
|
||||||
|
pybind11::class_<vision::meituan::YOLOv6, FastDeployModel>(
|
||||||
|
meituan_module, "YOLOv6")
|
||||||
|
.def(pybind11::init<std::string, std::string, RuntimeOption, Frontend>())
|
||||||
|
.def("predict",
|
||||||
|
[](vision::meituan::YOLOv6& self, pybind11::array& data,
|
||||||
|
float conf_threshold, float nms_iou_threshold) {
|
||||||
|
auto mat = PyArrayToCvMat(data);
|
||||||
|
vision::DetectionResult res;
|
||||||
|
self.Predict(&mat, &res, conf_threshold, nms_iou_threshold);
|
||||||
|
return res;
|
||||||
|
})
|
||||||
|
.def("is_dynamic_shape",
|
||||||
|
[](vision::meituan::YOLOv6& self) {
|
||||||
|
return self.IsDynamicShape();
|
||||||
|
})
|
||||||
|
.def_readwrite("size", &vision::meituan::YOLOv6::size)
|
||||||
|
.def_readwrite("padding_value",
|
||||||
|
&vision::meituan::YOLOv6::padding_value)
|
||||||
|
.def_readwrite("is_mini_pad", &vision::meituan::YOLOv6::is_mini_pad)
|
||||||
|
.def_readwrite("is_no_pad", &vision::meituan::YOLOv6::is_no_pad)
|
||||||
|
.def_readwrite("is_scale_up", &vision::meituan::YOLOv6::is_scale_up)
|
||||||
|
.def_readwrite("stride", &vision::meituan::YOLOv6::stride)
|
||||||
|
.def_readwrite("max_wh", &vision::meituan::YOLOv6::max_wh);
|
||||||
|
}
|
||||||
|
} // namespace fastdeploy
|
262
fastdeploy/vision/meituan/yolov6.cc
Normal file
262
fastdeploy/vision/meituan/yolov6.cc
Normal file
@@ -0,0 +1,262 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision/meituan/yolov6.h"
|
||||||
|
#include "fastdeploy/utils/perf.h"
|
||||||
|
#include "fastdeploy/vision/utils/utils.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
namespace meituan {
|
||||||
|
|
||||||
|
void LetterBox(Mat* mat, std::vector<int> size, std::vector<float> color,
|
||||||
|
bool _auto, bool scale_fill = false, bool scale_up = true,
|
||||||
|
int stride = 32) {
|
||||||
|
float scale = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
|
||||||
|
size[0] * 1.0f / static_cast<float>(mat->Width()));
|
||||||
|
if (!scale_up) {
|
||||||
|
scale = std::min(scale, 1.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
int resize_h = int(round(static_cast<float>(mat->Height()) * scale));
|
||||||
|
int resize_w = int(round(static_cast<float>(mat->Width()) * scale));
|
||||||
|
|
||||||
|
int pad_w = size[0] - resize_w;
|
||||||
|
int pad_h = size[1] - resize_h;
|
||||||
|
if (_auto) {
|
||||||
|
pad_h = pad_h % stride;
|
||||||
|
pad_w = pad_w % stride;
|
||||||
|
} else if (scale_fill) {
|
||||||
|
pad_h = 0;
|
||||||
|
pad_w = 0;
|
||||||
|
resize_h = size[1];
|
||||||
|
resize_w = size[0];
|
||||||
|
}
|
||||||
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
||||||
|
Resize::Run(mat, resize_w, resize_h);
|
||||||
|
}
|
||||||
|
if (pad_h > 0 || pad_w > 0) {
|
||||||
|
float half_h = pad_h * 1.0 / 2;
|
||||||
|
int top = int(round(half_h - 0.1));
|
||||||
|
int bottom = int(round(half_h + 0.1));
|
||||||
|
float half_w = pad_w * 1.0 / 2;
|
||||||
|
int left = int(round(half_w - 0.1));
|
||||||
|
int right = int(round(half_w + 0.1));
|
||||||
|
Pad::Run(mat, top, bottom, left, right, color);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
YOLOv6::YOLOv6(const std::string& model_file, const std::string& params_file,
|
||||||
|
const RuntimeOption& custom_option,
|
||||||
|
const Frontend& model_format) {
|
||||||
|
if (model_format == Frontend::ONNX) {
|
||||||
|
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||||
|
} else {
|
||||||
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||||
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||||
|
}
|
||||||
|
runtime_option = custom_option;
|
||||||
|
runtime_option.model_format = model_format;
|
||||||
|
runtime_option.model_file = model_file;
|
||||||
|
runtime_option.params_file = params_file;
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool YOLOv6::Initialize() {
|
||||||
|
// parameters for preprocess
|
||||||
|
size = {640, 640};
|
||||||
|
padding_value = {114.0, 114.0, 114.0};
|
||||||
|
is_mini_pad = false;
|
||||||
|
is_no_pad = false;
|
||||||
|
is_scale_up = false;
|
||||||
|
stride = 32;
|
||||||
|
max_wh = 4096.0f;
|
||||||
|
|
||||||
|
if (!InitRuntime()) {
|
||||||
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
// Check if the input shape is dynamic after Runtime already initialized,
|
||||||
|
// Note that, YOLOv6 has 1 input only. We need to force is_mini_pad
|
||||||
|
// 'false' to keep static shape after padding (LetterBox)
|
||||||
|
// when the is_dynamic_shape is 'false'.
|
||||||
|
is_dynamic_shape_ = false;
|
||||||
|
auto shape = InputInfoOfRuntime(0).shape;
|
||||||
|
for (const auto &d: shape) {
|
||||||
|
if (d <= 0) {
|
||||||
|
is_dynamic_shape_ = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!is_dynamic_shape_) {
|
||||||
|
is_mini_pad = false;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool YOLOv6::Preprocess(Mat* mat, FDTensor* output,
|
||||||
|
std::map<std::string, std::array<float, 2>>* im_info) {
|
||||||
|
// process after image load
|
||||||
|
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
|
||||||
|
size[0] * 1.0f / static_cast<float>(mat->Width()));
|
||||||
|
if (ratio != 1.0) {
|
||||||
|
int interp = cv::INTER_AREA;
|
||||||
|
if (ratio > 1.0) {
|
||||||
|
interp = cv::INTER_LINEAR;
|
||||||
|
}
|
||||||
|
int resize_h = int(round(static_cast<float>(mat->Height()) * ratio));
|
||||||
|
int resize_w = int(round(static_cast<float>(mat->Width()) * ratio));
|
||||||
|
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
|
||||||
|
}
|
||||||
|
// yolov6's preprocess steps
|
||||||
|
// 1. letterbox
|
||||||
|
// 2. BGR->RGB
|
||||||
|
// 3. HWC->CHW
|
||||||
|
LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up,
|
||||||
|
stride);
|
||||||
|
BGR2RGB::Run(mat);
|
||||||
|
Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
|
||||||
|
std::vector<float>(mat->Channels(), 1.0));
|
||||||
|
|
||||||
|
// Record output shape of preprocessed image
|
||||||
|
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
||||||
|
static_cast<float>(mat->Width())};
|
||||||
|
|
||||||
|
HWC2CHW::Run(mat);
|
||||||
|
Cast::Run(mat, "float");
|
||||||
|
mat->ShareWithTensor(output);
|
||||||
|
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool YOLOv6::Postprocess(
|
||||||
|
FDTensor& infer_result, DetectionResult* result,
|
||||||
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||||
|
float conf_threshold, float nms_iou_threshold) {
|
||||||
|
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
|
||||||
|
result->Clear();
|
||||||
|
result->Reserve(infer_result.shape[1]);
|
||||||
|
if (infer_result.dtype != FDDataType::FP32) {
|
||||||
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
float* data = static_cast<float*>(infer_result.Data());
|
||||||
|
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
|
||||||
|
int s = i * infer_result.shape[2];
|
||||||
|
float confidence = data[s + 4];
|
||||||
|
float* max_class_score =
|
||||||
|
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
|
||||||
|
confidence *= (*max_class_score);
|
||||||
|
// filter boxes by conf_threshold
|
||||||
|
if (confidence <= conf_threshold) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
int32_t label_id = std::distance(data + s + 5, max_class_score);
|
||||||
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
||||||
|
result->boxes.emplace_back(std::array<float, 4>{
|
||||||
|
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
|
||||||
|
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
|
||||||
|
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
|
||||||
|
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
|
||||||
|
result->label_ids.push_back(label_id);
|
||||||
|
result->scores.push_back(confidence);
|
||||||
|
}
|
||||||
|
utils::NMS(result, nms_iou_threshold);
|
||||||
|
|
||||||
|
// scale the boxes to the origin image shape
|
||||||
|
auto iter_out = im_info.find("output_shape");
|
||||||
|
auto iter_ipt = im_info.find("input_shape");
|
||||||
|
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
|
||||||
|
"Cannot find input_shape or output_shape from im_info.");
|
||||||
|
float out_h = iter_out->second[0];
|
||||||
|
float out_w = iter_out->second[1];
|
||||||
|
float ipt_h = iter_ipt->second[0];
|
||||||
|
float ipt_w = iter_ipt->second[1];
|
||||||
|
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
|
||||||
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
||||||
|
float pad_h = (out_h - ipt_h * scale) / 2;
|
||||||
|
float pad_w = (out_w - ipt_w * scale) / 2;
|
||||||
|
int32_t label_id = (result->label_ids)[i];
|
||||||
|
// clip box
|
||||||
|
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
|
||||||
|
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
|
||||||
|
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
|
||||||
|
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
|
||||||
|
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
|
||||||
|
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
|
||||||
|
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
|
||||||
|
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
|
||||||
|
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
||||||
|
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
||||||
|
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
||||||
|
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool YOLOv6::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
||||||
|
float nms_iou_threshold) {
|
||||||
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
|
TIMERECORD_START(0)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
Mat mat(*im);
|
||||||
|
std::vector<FDTensor> input_tensors(1);
|
||||||
|
|
||||||
|
std::map<std::string, std::array<float, 2>> im_info;
|
||||||
|
|
||||||
|
// Record the shape of image and the shape of preprocessed image
|
||||||
|
im_info["input_shape"] = {static_cast<float>(mat.Height()),
|
||||||
|
static_cast<float>(mat.Width())};
|
||||||
|
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
||||||
|
static_cast<float>(mat.Width())};
|
||||||
|
|
||||||
|
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
||||||
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
|
TIMERECORD_END(0, "Preprocess")
|
||||||
|
TIMERECORD_START(1)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||||
|
std::vector<FDTensor> output_tensors;
|
||||||
|
if (!Infer(input_tensors, &output_tensors)) {
|
||||||
|
FDERROR << "Failed to inference." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
|
TIMERECORD_END(1, "Inference")
|
||||||
|
TIMERECORD_START(2)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
|
||||||
|
nms_iou_threshold)) {
|
||||||
|
FDERROR << "Failed to post process." << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef FASTDEPLOY_DEBUG
|
||||||
|
TIMERECORD_END(2, "Postprocess")
|
||||||
|
#endif
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace meituan
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
100
fastdeploy/vision/meituan/yolov6.h
Normal file
100
fastdeploy/vision/meituan/yolov6.h
Normal file
@@ -0,0 +1,100 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "fastdeploy/fastdeploy_model.h"
|
||||||
|
#include "fastdeploy/vision/common/processors/transform.h"
|
||||||
|
#include "fastdeploy/vision/common/result.h"
|
||||||
|
|
||||||
|
namespace fastdeploy {
|
||||||
|
|
||||||
|
namespace vision {
|
||||||
|
|
||||||
|
namespace meituan {
|
||||||
|
|
||||||
|
class FASTDEPLOY_DECL YOLOv6 : public FastDeployModel {
|
||||||
|
public:
|
||||||
|
// 当model_format为ONNX时,无需指定params_file
|
||||||
|
// 当model_format为Paddle时,则需同时指定model_file & params_file
|
||||||
|
YOLOv6(const std::string& model_file, const std::string& params_file = "",
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const Frontend& model_format = Frontend::ONNX);
|
||||||
|
|
||||||
|
// 定义模型的名称
|
||||||
|
virtual std::string ModelName() const { return "meituan/YOLOv6"; }
|
||||||
|
|
||||||
|
// 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作
|
||||||
|
virtual bool Initialize();
|
||||||
|
|
||||||
|
// 输入图像预处理操作
|
||||||
|
// Mat为FastDeploy定义的数据结构
|
||||||
|
// FDTensor为预处理后的Tensor数据,传给后端进行推理
|
||||||
|
// im_info为预处理过程保存的数据,在后处理中需要用到
|
||||||
|
virtual bool Preprocess(Mat* mat, FDTensor* outputs,
|
||||||
|
std::map<std::string, std::array<float, 2>>* im_info);
|
||||||
|
|
||||||
|
// 后端推理结果后处理,输出给用户
|
||||||
|
// infer_result 为后端推理后的输出Tensor
|
||||||
|
// result 为模型预测的结果
|
||||||
|
// im_info 为预处理记录的信息,后处理用于还原box
|
||||||
|
// conf_threshold 后处理时过滤box的置信度阈值
|
||||||
|
// nms_iou_threshold 后处理时NMS设定的iou阈值
|
||||||
|
virtual bool Postprocess(
|
||||||
|
FDTensor& infer_result, DetectionResult* result,
|
||||||
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||||
|
float conf_threshold, float nms_iou_threshold);
|
||||||
|
|
||||||
|
// 模型预测接口,即用户调用的接口
|
||||||
|
// im 为用户的输入数据,目前对于CV均定义为cv::Mat
|
||||||
|
// result 为模型预测的输出结构体
|
||||||
|
// conf_threshold 为后处理的参数
|
||||||
|
// nms_iou_threshold 为后处理的参数
|
||||||
|
virtual bool Predict(cv::Mat* im, DetectionResult* result,
|
||||||
|
float conf_threshold = 0.25,
|
||||||
|
float nms_iou_threshold = 0.5);
|
||||||
|
|
||||||
|
// 用户可以通过该接口 查看输入的模型是否为动态维度
|
||||||
|
virtual bool IsDynamicShape() const { return is_dynamic_shape_; }
|
||||||
|
|
||||||
|
// 以下为模型在预测时的一些参数,基本是前后处理所需
|
||||||
|
// 用户在创建模型后,可根据模型的要求,以及自己的需求
|
||||||
|
// 对参数进行修改
|
||||||
|
// tuple of (width, height)
|
||||||
|
std::vector<int> size;
|
||||||
|
// padding value, size should be same with Channels
|
||||||
|
std::vector<float> padding_value;
|
||||||
|
// only pad to the minimum rectange which height and width is times of stride
|
||||||
|
bool is_mini_pad;
|
||||||
|
// while is_mini_pad = false and is_no_pad = true, will resize the image to
|
||||||
|
// the set size
|
||||||
|
bool is_no_pad;
|
||||||
|
// if is_scale_up is false, the input image only can be zoom out, the maximum
|
||||||
|
// resize scale cannot exceed 1.0
|
||||||
|
bool is_scale_up;
|
||||||
|
// padding stride, for is_mini_pad
|
||||||
|
int stride;
|
||||||
|
// for offseting the boxes by classes when using NMS, default 4096 in meituan/YOLOv6
|
||||||
|
float max_wh;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape or not.)
|
||||||
|
// meituan/YOLOv6 official 'export_onnx.py' script will export static ONNX by default.
|
||||||
|
// while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This value will
|
||||||
|
// auto check by fastdeploy after the internal Runtime already initialized.
|
||||||
|
bool is_dynamic_shape_;
|
||||||
|
};
|
||||||
|
} // namespace meituan
|
||||||
|
} // namespace vision
|
||||||
|
} // namespace fastdeploy
|
@@ -18,6 +18,7 @@ namespace fastdeploy {
|
|||||||
|
|
||||||
void BindPpClsModel(pybind11::module& m);
|
void BindPpClsModel(pybind11::module& m);
|
||||||
void BindUltralytics(pybind11::module& m);
|
void BindUltralytics(pybind11::module& m);
|
||||||
|
void BindMeituan(pybind11::module& m);
|
||||||
#ifdef ENABLE_VISION_VISUALIZE
|
#ifdef ENABLE_VISION_VISUALIZE
|
||||||
void BindVisualize(pybind11::module& m);
|
void BindVisualize(pybind11::module& m);
|
||||||
#endif
|
#endif
|
||||||
@@ -40,6 +41,9 @@ void BindVision(pybind11::module& m) {
|
|||||||
|
|
||||||
BindPpClsModel(m);
|
BindPpClsModel(m);
|
||||||
BindUltralytics(m);
|
BindUltralytics(m);
|
||||||
|
BindMeituan(m);
|
||||||
|
#ifdef ENABLE_VISION_VISUALIZE
|
||||||
BindVisualize(m);
|
BindVisualize(m);
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
12
model_zoo/.gitignore
vendored
Normal file
12
model_zoo/.gitignore
vendored
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
*.png
|
||||||
|
*.jpg
|
||||||
|
*.jpeg
|
||||||
|
*.onnx
|
||||||
|
*.zip
|
||||||
|
*.tar
|
||||||
|
*.pd*
|
||||||
|
*.engine
|
||||||
|
*.trt
|
||||||
|
*.nb
|
||||||
|
*.tgz
|
||||||
|
*.gz
|
@@ -23,7 +23,7 @@ YOLOv5模型加载和初始化,当model_format为`fd.Frontend.ONNX`时,只
|
|||||||
>
|
>
|
||||||
> **参数**
|
> **参数**
|
||||||
>
|
>
|
||||||
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,RGB格式
|
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||||
> > * **conf_threshold**(float): 检测框置信度过滤阈值
|
> > * **conf_threshold**(float): 检测框置信度过滤阈值
|
||||||
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
|
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
|
||||||
|
|
||||||
@@ -49,9 +49,9 @@ YOLOv5模型加载和初始化,当model_format为`Frontend::ONNX`时,只需
|
|||||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||||
> * **model_format**(Frontend): 模型格式
|
> * **model_format**(Frontend): 模型格式
|
||||||
|
|
||||||
#### predict函数
|
#### Predict函数
|
||||||
> ```
|
> ```
|
||||||
> YOLOv5::predict(cv::Mat* im, DetectionResult* result,
|
> YOLOv5::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
> float conf_threshold = 0.25,
|
> float conf_threshold = 0.25,
|
||||||
> float nms_iou_threshold = 0.5)
|
> float nms_iou_threshold = 0.5)
|
||||||
> ```
|
> ```
|
||||||
@@ -59,7 +59,7 @@ YOLOv5模型加载和初始化,当model_format为`Frontend::ONNX`时,只需
|
|||||||
>
|
>
|
||||||
> **参数**
|
> **参数**
|
||||||
>
|
>
|
||||||
> > * **im**: 输入图像,注意需为HWC,RGB格式
|
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||||
> > * **result**: 检测结果,包括检测框,各个框的置信度
|
> > * **result**: 检测结果,包括检测框,各个框的置信度
|
||||||
> > * **conf_threshold**: 检测框置信度过滤阈值
|
> > * **conf_threshold**: 检测框置信度过滤阈值
|
||||||
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
|
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
|
||||||
|
45
model_zoo/vision/yolov6/README.md
Normal file
45
model_zoo/vision/yolov6/README.md
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
# YOLOv6部署示例
|
||||||
|
|
||||||
|
本文档说明如何进行[YOLOv6](https://github.com/meituan/YOLOv6)的快速部署推理。本目录结构如下
|
||||||
|
```
|
||||||
|
.
|
||||||
|
├── cpp # C++ 代码目录
|
||||||
|
│ ├── CMakeLists.txt # C++ 代码编译CMakeLists文件
|
||||||
|
│ ├── README.md # C++ 代码编译部署文档
|
||||||
|
│ └── yolov6.cc # C++ 示例代码
|
||||||
|
├── README.md # YOLOv6 部署文档
|
||||||
|
└── yolov6.py # Python示例代码
|
||||||
|
```
|
||||||
|
|
||||||
|
## 安装FastDeploy
|
||||||
|
|
||||||
|
使用如下命令安装FastDeploy,注意到此处安装的是`vision-cpu`,也可根据需求安装`vision-gpu`
|
||||||
|
```
|
||||||
|
# 安装fastdeploy-python工具
|
||||||
|
pip install fastdeploy-python
|
||||||
|
|
||||||
|
# 安装vision-cpu模块
|
||||||
|
fastdeploy install vision-cpu
|
||||||
|
```
|
||||||
|
|
||||||
|
## Python部署
|
||||||
|
|
||||||
|
执行如下代码即会自动下载YOLOv6模型和测试图片
|
||||||
|
```
|
||||||
|
python yolov6.py
|
||||||
|
```
|
||||||
|
|
||||||
|
执行完成后会将可视化结果保存在本地`vis_result.jpg`,同时输出检测结果如下
|
||||||
|
```
|
||||||
|
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
|
||||||
|
11.772949,229.269287, 792.933838, 748.294189, 0.954794, 5
|
||||||
|
667.140381,396.185455, 807.701721, 881.810120, 0.900997, 0
|
||||||
|
223.271011,405.105743, 345.740723, 859.328552, 0.898938, 0
|
||||||
|
50.135777,405.863129, 245.485519, 904.153809, 0.888936, 0
|
||||||
|
0.000000,549.002869, 77.864723, 869.455017, 0.614145, 0
|
||||||
|
```
|
||||||
|
|
||||||
|
## 其它文档
|
||||||
|
|
||||||
|
- [C++部署](./cpp/README.md)
|
||||||
|
- [YOLOv6 API文档](./api.md)
|
71
model_zoo/vision/yolov6/api.md
Normal file
71
model_zoo/vision/yolov6/api.md
Normal file
@@ -0,0 +1,71 @@
|
|||||||
|
# YOLOv6 API说明
|
||||||
|
|
||||||
|
## Python API
|
||||||
|
|
||||||
|
### YOLOv6类
|
||||||
|
```
|
||||||
|
fastdeploy.vision.meituan.YOLOv6(model_file, params_file=None, runtime_option=None, model_format=fd.Frontend.ONNX)
|
||||||
|
```
|
||||||
|
YOLOv6模型加载和初始化,当model_format为`fd.Frontend.ONNX`时,只需提供model_file,如`yolov6s.onnx`;当model_format为`fd.Frontend.PADDLE`时,则需同时提供model_file和params_file。
|
||||||
|
|
||||||
|
**参数**
|
||||||
|
|
||||||
|
> * **model_file**(str): 模型文件路径
|
||||||
|
> * **params_file**(str): 参数文件路径
|
||||||
|
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||||
|
> * **model_format**(Frontend): 模型格式
|
||||||
|
|
||||||
|
#### predict函数
|
||||||
|
> ```
|
||||||
|
> YOLOv6.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
|
> ```
|
||||||
|
> 模型预测结口,输入图像直接输出检测结果。
|
||||||
|
>
|
||||||
|
> **参数**
|
||||||
|
>
|
||||||
|
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||||
|
> > * **conf_threshold**(float): 检测框置信度过滤阈值
|
||||||
|
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
|
||||||
|
|
||||||
|
示例代码参考[yolov6.py](./yolov6.py)
|
||||||
|
|
||||||
|
|
||||||
|
## C++ API
|
||||||
|
|
||||||
|
### YOLOv6类
|
||||||
|
```
|
||||||
|
fastdeploy::vision::meituan::YOLOv6(
|
||||||
|
const string& model_file,
|
||||||
|
const string& params_file = "",
|
||||||
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||||
|
const Frontend& model_format = Frontend::ONNX)
|
||||||
|
```
|
||||||
|
YOLOv6模型加载和初始化,当model_format为`Frontend::ONNX`时,只需提供model_file,如`yolov6s.onnx`;当model_format为`Frontend::PADDLE`时,则需同时提供model_file和params_file。
|
||||||
|
|
||||||
|
**参数**
|
||||||
|
|
||||||
|
> * **model_file**(str): 模型文件路径
|
||||||
|
> * **params_file**(str): 参数文件路径
|
||||||
|
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||||
|
> * **model_format**(Frontend): 模型格式
|
||||||
|
|
||||||
|
#### Predict函数
|
||||||
|
> ```
|
||||||
|
> YOLOv6::Predict(cv::Mat* im, DetectionResult* result,
|
||||||
|
> float conf_threshold = 0.25,
|
||||||
|
> float nms_iou_threshold = 0.5)
|
||||||
|
> ```
|
||||||
|
> 模型预测接口,输入图像直接输出检测结果。
|
||||||
|
>
|
||||||
|
> **参数**
|
||||||
|
>
|
||||||
|
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||||
|
> > * **result**: 检测结果,包括检测框,各个框的置信度
|
||||||
|
> > * **conf_threshold**: 检测框置信度过滤阈值
|
||||||
|
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
|
||||||
|
|
||||||
|
示例代码参考[cpp/yolov6.cc](cpp/yolov6.cc)
|
||||||
|
|
||||||
|
## 其它API使用
|
||||||
|
|
||||||
|
- [模型部署RuntimeOption配置](../../../docs/api/runtime_option.md)
|
17
model_zoo/vision/yolov6/cpp/CMakeLists.txt
Normal file
17
model_zoo/vision/yolov6/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
PROJECT(yolov6_demo C CXX)
|
||||||
|
CMAKE_MINIMUM_REQUIRED (VERSION 3.16)
|
||||||
|
|
||||||
|
# 在低版本ABI环境中,通过如下代码进行兼容性编译
|
||||||
|
# add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
|
||||||
|
|
||||||
|
# 指定下载解压后的fastdeploy库路径
|
||||||
|
set(FASTDEPLOY_INSTALL_DIR ${PROJECT_SOURCE_DIR}/fastdeploy-linux-x64-0.0.3/)
|
||||||
|
|
||||||
|
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||||
|
|
||||||
|
# 添加FastDeploy依赖头文件
|
||||||
|
include_directories(${FASTDEPLOY_INCS})
|
||||||
|
|
||||||
|
add_executable(yolov6_demo ${PROJECT_SOURCE_DIR}/yolov6.cc)
|
||||||
|
# 添加FastDeploy库依赖
|
||||||
|
target_link_libraries(yolov6_demo ${FASTDEPLOY_LIBS})
|
30
model_zoo/vision/yolov6/cpp/README.md
Normal file
30
model_zoo/vision/yolov6/cpp/README.md
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
# 编译YOLOv6示例
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
# 下载和解压预测库
|
||||||
|
wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz
|
||||||
|
tar xvf fastdeploy-linux-x64-0.0.3.tgz
|
||||||
|
|
||||||
|
# 编译示例代码
|
||||||
|
mkdir build & cd build
|
||||||
|
cmake ..
|
||||||
|
make -j
|
||||||
|
|
||||||
|
# 下载模型和图片
|
||||||
|
wget https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6s.onnx
|
||||||
|
wget https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg
|
||||||
|
|
||||||
|
# 执行
|
||||||
|
./yolov6_demo
|
||||||
|
```
|
||||||
|
|
||||||
|
执行完后可视化的结果保存在本地`vis_result.jpg`,同时会将检测框输出在终端,如下所示
|
||||||
|
```
|
||||||
|
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
|
||||||
|
11.772949,229.269287, 792.933838, 748.294189, 0.954794, 5
|
||||||
|
667.140381,396.185455, 807.701721, 881.810120, 0.900997, 0
|
||||||
|
223.271011,405.105743, 345.740723, 859.328552, 0.898938, 0
|
||||||
|
50.135777,405.863129, 245.485519, 904.153809, 0.888936, 0
|
||||||
|
0.000000,549.002869, 77.864723, 869.455017, 0.614145, 0
|
||||||
|
```
|
40
model_zoo/vision/yolov6/cpp/yolov6.cc
Normal file
40
model_zoo/vision/yolov6/cpp/yolov6.cc
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "fastdeploy/vision.h"
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
namespace vis = fastdeploy::vision;
|
||||||
|
auto model = vis::meituan::YOLOv6("yolov6s.onnx");
|
||||||
|
if (!model.Initialized()) {
|
||||||
|
std::cerr << "Init Failed." << std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
cv::Mat im = cv::imread("bus.jpg");
|
||||||
|
cv::Mat vis_im = im.clone();
|
||||||
|
|
||||||
|
vis::DetectionResult res;
|
||||||
|
if (!model.Predict(&im, &res)) {
|
||||||
|
std::cerr << "Prediction Failed." << std::endl;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 输出预测框结果
|
||||||
|
std::cout << res.Str() << std::endl;
|
||||||
|
|
||||||
|
// 可视化预测结果
|
||||||
|
vis::Visualize::VisDetection(&vis_im, res);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
return 0;
|
||||||
|
}
|
24
model_zoo/vision/yolov6/yolov6.py
Normal file
24
model_zoo/vision/yolov6/yolov6.py
Normal file
@@ -0,0 +1,24 @@
|
|||||||
|
import fastdeploy as fd
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
# 下载模型和测试图片
|
||||||
|
model_url = "https://github.com/meituan/YOLOv6/releases/download/0.1.0/yolov6s.onnx"
|
||||||
|
test_jpg_url = "https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg"
|
||||||
|
fd.download(model_url, ".", show_progress=True)
|
||||||
|
fd.download(test_jpg_url, ".", show_progress=True)
|
||||||
|
|
||||||
|
# 加载模型
|
||||||
|
model = fd.vision.meituan.YOLOv6("yolov6s.onnx")
|
||||||
|
print(model.is_dynamic_shape())
|
||||||
|
|
||||||
|
# 预测图片
|
||||||
|
im = cv2.imread("bus.jpg")
|
||||||
|
result = model.predict(im, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||||
|
|
||||||
|
# 可视化结果
|
||||||
|
fd.vision.visualize.vis_detection(im, result)
|
||||||
|
cv2.imwrite("vis_result.jpg", im)
|
||||||
|
|
||||||
|
# 输出预测结果
|
||||||
|
print(result)
|
||||||
|
print(model.runtime_option)
|
Reference in New Issue
Block a user