[Feature] Optimize prefix cache (#3208)

* [LLM] support ep

* Update worker_process.py

* Update expert_service.py

* Update worker_process.py

* format files

* optimize prefix cache

* optimize prefix cache

* optimize prefix cache

* pre commit format

* pre commit format

* pre commit format

* Update cache_messager.py
This commit is contained in:
ltd0924
2025-08-05 17:13:11 +08:00
committed by GitHub
parent 9f9971844f
commit dcf9c2daff
7 changed files with 314 additions and 147 deletions

View File

@@ -14,18 +14,72 @@
# limitations under the License.
"""
import argparse
import json
import math
import threading
import time
import threading
import numpy as np
import paddle
from fastdeploy.cache_manager.transfer_factory import IPCCommManager, RDMACommManager
from fastdeploy.config import SpeculativeConfig
from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal
from fastdeploy.model_executor.ops.gpu import set_data_ipc
from fastdeploy.utils import get_logger
logger = get_logger("cache_messager", "cache_messager.log")
def parse_args():
"""
从命令行解析参数
"""
parser = argparse.ArgumentParser("Cache Messager")
parser.add_argument(
"--splitwise_role",
type=str,
default="mixed",
help="splitwise role, can be decode, prefill or mixed",
)
parser.add_argument("--rank", type=int, default=0, help="current rank")
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--num_hidden_layers", type=int, default=1, help="model num layers")
parser.add_argument("--head_dim", type=int, default=1, help="model head dim")
parser.add_argument("--kv_num_head", type=int, default=1, help="model kv num head")
parser.add_argument("--rdma_port", type=str, default="", help="rmda port")
parser.add_argument("--mp_num", type=int, default=1, help="number of model parallel")
parser.add_argument("--engine_pid", type=str, default=None, help="engine pid")
parser.add_argument(
"--protocol",
type=str,
default="ipc",
help="cache transfer protocol, only surport ipc now",
)
parser.add_argument("--pod_ip", type=str, default="0.0.0.0", help="pod ip")
parser.add_argument(
"--engine_worker_queue_port",
type=int,
default=9923,
help="engine worker queue port",
)
parser.add_argument("--num_gpu_blocks", type=int, default=1, help="gpu cache block number")
parser.add_argument("--block_size", type=int, default=64, help="cache block size(tokens)")
parser.add_argument(
"--cache_dtype",
type=str,
default="bfloat16",
choices=["uint8", "bfloat16"],
help="cache dtype",
)
parser.add_argument(
"--speculative_config",
type=json.loads,
default="{}",
help="speculative config",
)
parser.add_argument("--local_data_parallel_id", type=int, default=0)
args = parser.parse_args()
return args
class CacheMessager:
@@ -43,7 +97,7 @@ class CacheMessager:
gpu_cache_kvs,
rank,
nranks,
num_layers,
num_hidden_layers,
gpu_id=0,
rdma_port=None,
):
@@ -57,7 +111,7 @@ class CacheMessager:
gpu_cache_kvs (dict): GPU kv cache
rank (int): current rank
nranks (int): global rank number
num_layers (int): model layer number
num_hidden_layers (int): model layer number
gpu_id (int, optional): GPU ID
rdma_port (int, optional): RDMA port
@@ -86,13 +140,13 @@ class CacheMessager:
logger.info(f"splitwise role: {splitwise_role}, {transfer_protocol}" f"rank: {rank}")
# 1. initialize the cache_k_ptr_list and cache_v_ptr_list
self.num_layers = num_layers
self.num_hidden_layers = num_hidden_layers
cache_k_ptr_list = []
cache_v_ptr_list = []
cache_k = []
cache_v = []
self.messager = {}
for layer_idx in range(self.num_layers):
for layer_idx in range(self.num_hidden_layers):
key_cache = self.gpu_cache_kvs[f"key_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
val_cache = self.gpu_cache_kvs[f"value_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
cache_k.append(key_cache)
@@ -109,7 +163,7 @@ class CacheMessager:
if key_cache.dtype == paddle.bfloat16:
block_bytes *= 2
logger.info(
f"layers {num_layers} cache_shape: {cache_shape}, max_block_num: {max_block_num}, "
f"layers {num_hidden_layers} cache_shape: {cache_shape}, max_block_num: {max_block_num}, "
f"block_bytes: {block_bytes}, dtype: {key_cache.dtype}"
)
self.block_bytes = block_bytes
@@ -144,17 +198,13 @@ class CacheMessager:
self.cache_info = dict()
self.rank_id = self.rank + local_data_parallel_id * self.nranks # align with engine worker rank (paddle.distributed.launch)
layerwise_send_cache_thread = threading.Thread(target=self._prefill_layerwise_send_cache_thread)
layerwise_send_cache_thread.daemon = True
layerwise_send_cache_thread.start()
connect_rdma_thread = threading.Thread(target=self._handle_connect_task)
connect_rdma_thread.daemon = True
connect_rdma_thread.start()
logger.info(f"cache messager init finished, use {transfer_protocol}")
def _prefill_layerwise_send_cache_thread(self):
def prefill_layerwise_send_cache_thread(self):
"""
layerwise_send_cache_thread:
send cache to other instance
@@ -204,7 +254,7 @@ class CacheMessager:
cache_info = self.engine_worker_queue.get_cache_info()
if cache_info:
logger.debug(f"cache info {cache_info}")
logger.info(f"cache info {cache_info}")
for info in cache_info:
if info["request_id"] in self.cache_info:
self.cache_info[info["request_id"]].update(info)
@@ -223,7 +273,7 @@ class CacheMessager:
self.cache_info[info["request_id"]] = info
prefilled_layer_idx = layer_shm_value.value[0]
prefilled_step_idx = step_shm_value.value[0]
if prefilled_layer_idx == self.num_layers - 1:
if prefilled_layer_idx == self.num_hidden_layers - 1:
time.sleep(0.001)
prefilled_layer_idx = layer_shm_value.value[0]
prefilled_step_idx = step_shm_value.value[0]
@@ -234,7 +284,7 @@ class CacheMessager:
if not self.cache_info:
time.sleep(0.001)
continue
logger.debug(f"prefilled_layer_idx: {prefilled_layer_idx}, prefilled_step_idx: {prefilled_step_idx}")
logger.info(f"prefilled_layer_idx: {prefilled_layer_idx}, prefilled_step_idx: {prefilled_step_idx}")
for req_id, item in list(self.cache_info.items()):
if "status" not in item:
continue
@@ -251,7 +301,7 @@ class CacheMessager:
target_id = int(item["rdma_ports"][self.rank])
status = self.messager[current_transfer_protocol].connect(target_ip, target_id)
if not status:
logger.error(f"connect to {target_ip}:{target_id} failed")
logger.info(f"connect to {target_ip}:{target_id} failed")
item["status"] = "error"
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
@@ -263,7 +313,7 @@ class CacheMessager:
src_block_ids = paddle.to_tensor(item["src_block_ids"], dtype="int32", place="cpu")
dest_block_ids = paddle.to_tensor(item["dest_block_ids"], dtype="int32", place="cpu")
if item["current_id"] < prefilled_step_idx:
current_layer_idx = self.num_layers
current_layer_idx = self.num_hidden_layers
else:
current_layer_idx = prefilled_layer_idx + 1
@@ -281,7 +331,7 @@ class CacheMessager:
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
self.engine_worker_queue.put_finished_req([(item["request_id"], "write cache error")])
logger.error(
logger.info(
f"write cache failed, layer_idx: {layer_idx}, "
f"req_id: {item['request_id']}, dest_ip: {target_ip}"
)
@@ -292,14 +342,14 @@ class CacheMessager:
block_num = len(src_block_ids)
avg_time_per_block = cost_time * 1000 / block_num # ms
send_cache_speed = block_num * self.block_bytes / 1073741824 / cost_time # GB/s
logger.debug(
logger.info(
f"finish write cache for a layer, {item['request_id']}, {layer_idx}"
f" {current_transfer_protocol}"
f"block_num: {block_num}, send_cache_speed(GB/s): {round(send_cache_speed, 5)},"
f"avg_time per block(ms): {round(avg_time_per_block, 5)}"
)
item["layer_idx"] = current_layer_idx
if item["layer_idx"] == self.num_layers:
if item["layer_idx"] == self.num_hidden_layers:
if item["transfer_protocol"] == "ipc":
self.messager["ipc"].write_block_by_sync(target_id)
logger.info(f"finish write cache {item['request_id']}")
@@ -313,8 +363,8 @@ class CacheMessager:
self.last_layer_idx = prefilled_layer_idx
except Exception as e:
logger.error(f"prefill layerwise send cache thread has exception: {e}")
logger.info(f"prefill layerwise send cache thread has exception: {e}")
def _handle_connect_task(self):
while True:
try:
@@ -333,3 +383,90 @@ class CacheMessager:
self.engine_worker_queue.put_connect_rdma_task_response(response)
except Exception as e:
logger.error(f"handle_connect_task has exception: {e}")
def main():
device = args.device_id
rank = args.rank
paddle.set_device(f"gpu:{device}")
cache_type = args.cache_dtype
speculative_config = SpeculativeConfig(args.speculative_config)
num_extra_layers = speculative_config.num_extra_cache_layer
num_extra_layer_gpu_blocks = int(args.num_gpu_blocks * speculative_config.num_gpu_block_expand_ratio)
gpu_cache_kvs = {}
gpu_cache_k_tensors = []
gpu_cache_v_tensors = []
for i in range(args.num_hidden_layers + num_extra_layers):
num_gpu_blocks = args.num_gpu_blocks if i < args.num_hidden_layers else num_extra_layer_gpu_blocks
gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"] = paddle.full(
shape=[
num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
],
fill_value=0,
dtype=cache_type,
)
gpu_cache_k_tensors.append(gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"])
gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"] = paddle.full(
shape=[
num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
],
fill_value=0,
dtype=cache_type,
)
gpu_cache_v_tensors.append(gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"])
set_data_ipc(
gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"],
f"key_caches_{i}_rank{rank}.device{device}",
)
set_data_ipc(
gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"],
f"value_caches_{i}_rank{rank}.device{device}",
)
cache_kv_size_byte = sum([tmp.numel() * 1 for key, tmp in gpu_cache_kvs.items()])
logger.info(f"device :{device}")
logger.info(f"cache_kv_size_byte : {cache_kv_size_byte}")
logger.info(f"done init cache (full) gmem alloc : {paddle.device.cuda.memory_allocated()}")
cache_messager = CacheMessager(
splitwise_role=args.splitwise_role,
transfer_protocol=args.protocol,
pod_ip=args.pod_ip,
engine_worker_queue_port=args.engine_worker_queue_port,
local_data_parallel_id=args.local_data_parallel_id,
gpu_cache_kvs=gpu_cache_kvs,
rank=rank,
nranks=args.mp_num,
num_hidden_layers=args.num_hidden_layers + num_extra_layers,
gpu_id=device,
rdma_port=args.rdma_port,
)
cache_ready_signal_data = np.zeros(shape=[args.mp_num], dtype=np.int32)
cache_ready_signal = IPCSignal(
name="cache_ready_signal",
array=cache_ready_signal_data,
dtype=np.int32,
suffix=args.engine_pid,
create=False,
)
cache_ready_signal.value[rank] = 1
cache_messager.prefill_layerwise_send_cache_thread()
if __name__ == "__main__":
args = parse_args()
logger = get_logger("cache_messager", "cache_messager.log")
logger.info("create cache messager...")
logger.info(f"{args}")
main()

View File

@@ -28,7 +28,7 @@ from fastdeploy.config import SpeculativeConfig
from fastdeploy.inter_communicator import EngineCacheQueue, IPCSignal
from fastdeploy.model_executor.ops.gpu import (
cuda_host_alloc,
set_data_ipc,
share_external_data,
swap_cache_all_layers,
)
from fastdeploy.utils import get_logger
@@ -39,26 +39,12 @@ def parse_args():
从命令行解析参数
"""
parser = argparse.ArgumentParser("Cache transfer manager")
parser.add_argument(
"--splitwise_role",
type=str,
default="mixed",
help="splitwise role, can be decode, prefill or mixed",
)
parser.add_argument("--rank", type=int, default=0, help="current rank")
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--num_layers", type=int, default=1, help="model num layers")
parser.add_argument("--num_hidden_layers", type=int, default=1, help="model num layers")
parser.add_argument("--head_dim", type=int, default=1, help="model head dim")
parser.add_argument("--kv_num_head", type=int, default=1, help="model kv num head")
parser.add_argument("--rdma_port", type=str, default="", help="rmda port")
parser.add_argument("--mp_num", type=int, default=1, help="number of model parallel")
parser.add_argument(
"--protocol",
type=str,
default="ipc",
help="cache transfer protocol, only surport ipc now",
)
parser.add_argument("--enable_splitwise", type=int, default=0, help="enable splitwise ")
parser.add_argument("--cache_queue_port", type=int, default=9923, help="cache queue port")
parser.add_argument("--pod_ip", type=str, default="0.0.0.0", help="pod ip")
parser.add_argument(
@@ -68,7 +54,6 @@ def parse_args():
help="engine worker queue port",
)
parser.add_argument("--engine_pid", type=str, default=None, help="engine pid")
parser.add_argument("--num_gpu_blocks", type=int, default=1, help="gpu cache block number")
parser.add_argument("--num_cpu_blocks", type=int, default=4, help="cpu cache block number")
parser.add_argument("--block_size", type=int, default=64, help="cache block size(tokens)")
@@ -109,7 +94,6 @@ class CacheTransferManager:
device = args.device_id
rank = args.rank
paddle.set_device(f"gpu:{device}")
self.gpu_cache_kvs = {}
self.cpu_cache_kvs = {}
self.gpu_cache_k_tensors = []
@@ -138,40 +122,27 @@ class CacheTransferManager:
self.num_cpu_blocks = args.num_cpu_blocks
cache_type = args.cache_dtype
for i in range(args.num_layers + self.num_extra_layers):
num_gpu_blocks = args.num_gpu_blocks if i < args.num_layers else self.num_extra_layer_gpu_blocks
cache_shape = [
args.num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
]
self.gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"] = paddle.full(
shape=[
num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
],
fill_value=0,
dtype=cache_type,
)
self.gpu_cache_k_tensors.append(self.gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"])
self.gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"] = paddle.full(
shape=[
num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
],
fill_value=0,
dtype=cache_type,
)
self.gpu_cache_v_tensors.append(self.gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"])
for i in range(args.num_hidden_layers + self.num_extra_layers):
num_gpu_blocks = args.num_gpu_blocks if i < args.num_hidden_layers else self.num_extra_layer_gpu_blocks
cache_shape[0] = num_gpu_blocks
key_name = f"key_caches_{i}_rank{rank}.device{device}"
value_name = f"value_caches_{i}_rank{rank}.device{device}"
key_cache = paddle.empty(shape=[], dtype=cache_type)
value_cache = paddle.empty(shape=[], dtype=cache_type)
key_cache = share_external_data(key_cache, key_name, cache_shape)
value_cache = share_external_data(value_cache, value_name, cache_shape)
self.gpu_cache_kvs[key_name] = key_cache
self.gpu_cache_kvs[value_name] = value_cache
self.gpu_cache_k_tensors.append(self.gpu_cache_kvs[key_name])
self.gpu_cache_v_tensors.append(self.gpu_cache_kvs[value_name])
set_data_ipc(
self.gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"],
f"key_caches_{i}_rank{rank}.device{device}",
)
set_data_ipc(
self.gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"],
f"value_caches_{i}_rank{rank}.device{device}",
)
cache_kv_size_byte = sum([tmp.numel() * 1 for key, tmp in self.gpu_cache_kvs.items()])
logger.info(f"device :{self.device}")
logger.info(f"cache_kv_size_byte : {cache_kv_size_byte}")
@@ -180,7 +151,7 @@ class CacheTransferManager:
paddle.set_device("cpu")
self.k_dst_ptrs = []
self.v_dst_ptrs = []
for i in range(args.num_layers + self.num_extra_layers):
for i in range(args.num_hidden_layers + self.num_extra_layers):
self.cpu_cache_kvs[f"key_caches_{i}_rank{rank}"] = cuda_host_alloc(
args.num_cpu_blocks * args.bytes_per_layer_per_block
)
@@ -190,38 +161,6 @@ class CacheTransferManager:
)
self.v_dst_ptrs.append(self.cpu_cache_kvs[f"value_caches_{i}_rank{rank}"])
cache_ready_signal_data = np.zeros(shape=[args.mp_num], dtype=np.int32)
self.cache_ready_signal = IPCSignal(
name="cache_ready_signal",
array=cache_ready_signal_data,
dtype=np.int32,
suffix=args.engine_pid,
create=False,
)
self.cache_ready_signal.value[self.rank] = 1
paddle.set_device(f"gpu:{device}")
if args.enable_splitwise:
logger.debug("create cache messager...")
logger.info(f"{args}")
from fastdeploy.cache_manager.cache_messager import CacheMessager
self.cache_messager = CacheMessager(
splitwise_role=args.splitwise_role,
transfer_protocol=args.protocol,
pod_ip=args.pod_ip,
engine_worker_queue_port=args.engine_worker_queue_port,
local_data_parallel_id=args.local_data_parallel_id,
gpu_cache_kvs=self.gpu_cache_kvs,
rank=self.rank,
nranks=args.mp_num,
num_layers=args.num_layers + self.num_extra_layers,
gpu_id=self.device,
rdma_port=args.rdma_port,
)
logger.info("successfully create cache messager")
logger.info(f"done init CacheMessager gmem alloc : {paddle.device.cuda.memory_allocated()}")
cache_task_broadcast_data = np.zeros(shape=[1], dtype=np.int32)
self.cache_task_broadcast_signal = IPCSignal(
name="cache_task_broadcast_signal",

View File

@@ -141,6 +141,76 @@ class PrefixCacheManager:
filename = "cache_transfer_manager.py"
py_path = os.path.join(current_dir_path, filename)
cache_messager_processes = []
if self.splitwise_role != "mixed":
cache_messager_processes = self.launch_cache_messager(
cache_config,
tensor_parallel_size,
device_ids,
pod_ip,
engine_worker_queue_port,
pid_suffix,
)
if cache_messager_processes is None:
raise RuntimeError("Launch cache messager failed")
return []
if (
hasattr(cache_config.model_cfg, "num_key_value_heads")
and hasattr(cache_config.model_cfg, "num_key_value_heads")
and cache_config.model_cfg.num_key_value_heads is not None
and int(cache_config.model_cfg.num_key_value_heads) > 0
):
kv_num_head = int(cache_config.model_cfg.num_key_value_heads) // tensor_parallel_size
else:
kv_num_head = cache_config.model_cfg.num_attention_heads // tensor_parallel_size
log_dir = envs.FD_LOG_DIR
cache_manager_processes = []
for i in range(tensor_parallel_size):
launch_cmd = (
f" {sys.executable} {py_path}"
+ f" --device_id {int(device_ids[i])}"
+ f" --rank {i}"
+ f" --num_hidden_layers {cache_config.model_cfg.num_hidden_layers}"
+ f" --head_dim {cache_config.model_cfg.head_dim}"
+ f" --kv_num_head {kv_num_head}"
+ f" --mp_num {tensor_parallel_size}"
+ f" --cache_dtype {cache_config.cache_dtype}"
+ f" --cache_queue_port {cache_config.cache_queue_port}"
+ f" --pod_ip {pod_ip}"
+ f" --engine_worker_queue_port {engine_worker_queue_port}"
+ f" --num_gpu_blocks {cache_config.total_block_num}"
+ f" --num_cpu_blocks {cache_config.num_cpu_blocks}"
+ f" --bytes_per_layer_per_block {cache_config.bytes_per_layer_per_block}"
+ f" --block_size {cache_config.block_size}"
+ f" --engine_pid {pid_suffix}"
+ f" --local_data_parallel_id {self.local_data_parallel_id}"
+ f" --speculative_config '{self.speculative_config.to_json_string()}'"
+ f" >{log_dir}/launch_cache_manager_{int(device_ids[i])}.log 2>&1"
)
logger.info(f"Launch cache transfer manager, command:{launch_cmd}")
cache_manager_processes.append(subprocess.Popen(launch_cmd, shell=True, preexec_fn=os.setsid))
exit_code = cache_manager_processes[-1].poll()
if exit_code is None:
logger.info("Launch cache transfer manager successful")
else:
logger.info("Launch cache transfer manager failed, see launch_cache_manager.log for more information")
if cache_config.enable_hierarchical_cache and self.num_cpu_blocks > 0:
logger.info("Enable hierarchical cache.")
self._enable_cpu_cache()
cache_manager_processes.extend(cache_messager_processes)
return cache_manager_processes
def launch_cache_messager(
self, cache_config, tensor_parallel_size, device_ids, pod_ip, engine_worker_queue_port, pid_suffix
):
"""
launch_cache_messager function used to initialize the cache messager.
"""
current_dir_path = os.path.split(os.path.abspath(__file__))[0]
filename = "cache_messager.py"
if (
hasattr(cache_config.model_cfg, "num_key_value_heads")
and hasattr(cache_config.model_cfg, "num_key_value_heads")
@@ -159,8 +229,10 @@ class PrefixCacheManager:
suffix=pid_suffix,
create=True,
)
py_path = os.path.join(current_dir_path, filename)
log_dir = envs.FD_LOG_DIR
cache_manager_processes = []
cache_messager_processes = []
for i in range(tensor_parallel_size):
launch_cmd = (
"FLAGS_allocator_strategy=auto_growth CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7"
@@ -169,42 +241,34 @@ class PrefixCacheManager:
+ f" --device_id {int(device_ids[i])}"
+ f" --rank {i}"
+ f" --splitwise_role {self.splitwise_role}"
+ f" --num_layers {cache_config.model_cfg.num_hidden_layers}"
+ f" --num_hidden_layers {cache_config.model_cfg.num_hidden_layers}"
+ f" --head_dim {cache_config.model_cfg.head_dim}"
+ f" --kv_num_head {kv_num_head}"
+ f" --mp_num {tensor_parallel_size}"
+ f" --cache_dtype {cache_config.cache_dtype}"
+ f" --cache_queue_port {cache_config.cache_queue_port}"
+ f" --enable_splitwise {int(self.enable_splitwise)}"
+ f" --pod_ip {pod_ip}"
+ f" --engine_worker_queue_port {engine_worker_queue_port}"
+ f" --num_gpu_blocks {cache_config.total_block_num}"
+ f" --num_cpu_blocks {cache_config.num_cpu_blocks}"
+ f" --bytes_per_layer_per_block {cache_config.bytes_per_layer_per_block}"
+ f" --block_size {cache_config.block_size}"
+ f" --engine_pid {pid_suffix}"
+ f" --protocol {cache_config.cache_transfer_protocol}"
+ f" --local_data_parallel_id {self.local_data_parallel_id}"
+ f" --engine_pid {pid_suffix}"
+ f" --rdma_port {cache_config.rdma_comm_ports[i] if cache_config.rdma_comm_ports is not None else '0'}"
+ f" --speculative_config '{self.speculative_config.to_json_string()}'"
+ f" >{log_dir}/launch_cache_manager_{int(device_ids[i])}.log 2>&1"
+ f" >{log_dir}/launch_cache_messager_{int(device_ids[i])}.log 2>&1"
)
logger.info(f"Launch cache transfer manager, command:{launch_cmd}")
cache_manager_processes.append(subprocess.Popen(launch_cmd, shell=True, preexec_fn=os.setsid))
# 等待cache初始化完毕
logger.info("Waiting for cache transfer manager ready...")
logger.info(f"Launch cache messager, command:{launch_cmd}")
cache_messager_processes.append(subprocess.Popen(launch_cmd, shell=True, preexec_fn=os.setsid))
logger.info("Waiting for cache ready...")
while np.sum(self.cache_ready_signal.value) != tensor_parallel_size:
time.sleep(1)
exit_code = cache_manager_processes[-1].poll()
exit_code = cache_messager_processes[-1].poll()
if exit_code is None:
logger.info("Launch cache transfer manager successful")
logger.info("Launch cache messager successful")
else:
logger.info("Launch cache transfer manager failed, see launch_cache_manager.log for more information")
if cache_config.enable_hierarchical_cache and self.num_cpu_blocks > 0:
logger.info("Enable hierarchical cache.")
self._enable_cpu_cache()
return cache_manager_processes
logger.info("Launch cache messager failed, see launch_cache_messager.log for more information")
cache_messager_processes = None
return cache_messager_processes
def update_cache_config(self, cache_config):
"""

View File

@@ -775,10 +775,6 @@ class LLMEngine:
"""
Insert tasks to engine.
"""
for task in tasks:
start_span_request("DEQUEUE", task, trace.SpanKind.CONSUMER)
if task.sampling_params.bad_words is not None:
task.sampling_params.update_from_tokenizer(self.data_processor.tokenizer)
# TODO 返回至 scheduler
if allocated:
current_tasks = []
@@ -805,6 +801,11 @@ class LLMEngine:
self.engine_worker_queue.put_tasks((current_tasks, self.resource_manager.real_bsz))
return True
for task in tasks:
start_span_request("DEQUEUE", task, trace.SpanKind.CONSUMER)
if task.sampling_params.bad_words is not None:
task.sampling_params.update_from_tokenizer(self.data_processor.tokenizer)
self.resource_manager.check_and_free_block_tables()
if not isinstance(tasks, list):
@@ -846,11 +847,10 @@ class LLMEngine:
llm_logger.info(f"Tasks are sent to engine, req_ids={req_ids}")
for task in tasks:
task.inference_start_time = time.time()
if not is_prefill:
if not self.cfg.enable_mm:
self.update_requests_chunk_size(tasks)
else:
self.update_mm_requests_chunk_size(tasks)
if not self.cfg.enable_mm:
self.update_requests_chunk_size(tasks)
else:
self.update_mm_requests_chunk_size(tasks)
self.engine_worker_queue.put_tasks((tasks, self.resource_manager.real_bsz))
if is_prefill and self.cfg.scheduler_config.name != "splitwise":
self.engine_worker_queue.available_prefill_instances.put(1)
@@ -992,14 +992,17 @@ class LLMEngine:
self.running = False
if hasattr(self, "cache_manager_processes"):
self.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear()
self.resource_manager.cache_manager.cache_ready_signal.clear()
for p in self.cache_manager_processes:
llm_logger.info(f"Killing cache manager process {p.pid}")
try:
os.killpg(p.pid, signal.SIGTERM)
except Exception as e:
print(f"Error extracting file: {e}")
if hasattr(self.resource_manager.cache_manager, "cache_ready_signal"):
self.resource_manager.cache_manager.cache_ready_signal.clear()
self.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear()
if hasattr(self, "zmq_server") and self.zmq_server is not None:
self.zmq_server.close()
self.worker_ready_signal.clear()
self.exist_task_signal.clear()
self.exist_swapped_task_signal.clear()
@@ -1024,6 +1027,7 @@ class LLMEngine:
if hasattr(self, "dp_processed"):
for p in self.dp_processed:
p.join()
self.engine_worker_queue_server.cleanup()
def _setting_environ_variables(self):
"""

View File

@@ -37,6 +37,7 @@ from fastdeploy.model_executor.ops.gpu import (
eagle_get_self_hidden_states,
mtp_save_first_token,
mtp_step_paddle,
set_data_ipc,
share_external_data,
)
from fastdeploy.model_executor.pre_and_post_process import pre_process, rebuild_padding
@@ -141,9 +142,7 @@ class MTPProposer(Proposer):
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
max_num_blocks=self.num_gpu_blocks, kv_cache_quant_type=kv_cache_quant_type
)
if not self.parallel_config.do_profile and (
self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"
):
if not self.parallel_config.do_profile and self.parallel_config.splitwise_role != "mixed":
cache_kvs_list = []
for i in range(
self.num_main_model_layers,
@@ -160,7 +159,10 @@ class MTPProposer(Proposer):
self.model_inputs["caches"] = cache_kvs_list
else:
for i in range(self.model_config.num_hidden_layers):
for i in range(
self.num_main_model_layers,
self.num_main_model_layers + self.model_config.num_hidden_layers,
):
self.cache_kvs[f"key_caches_{i}"] = paddle.full(
shape=kv_cache_shape,
fill_value=0,
@@ -171,6 +173,15 @@ class MTPProposer(Proposer):
fill_value=0,
dtype=cache_type,
)
if self.cache_config.enable_prefix_caching:
set_data_ipc(
self.cache_kvs[f"key_caches_{i}"],
f"key_caches_{i}_rank{self.local_rank}.device{self.device_id}",
)
set_data_ipc(
self.cache_kvs[f"value_caches_{i}"],
f"value_caches_{i}_rank{self.local_rank}.device{self.device_id}",
)
self.model_inputs["caches"] = list(self.cache_kvs.values())
for value in self.cache_kvs.values():
del value
@@ -235,7 +246,7 @@ class MTPProposer(Proposer):
self.main_model_num_gpu_blocks = num_gpu_blocks
self.num_gpu_blocks = int(num_gpu_blocks * self.speculative_config.num_gpu_block_expand_ratio)
if not (self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"):
if self.parallel_config.splitwise_role == "mixed":
self.initialize_kv_cache()
# Reset free list

View File

@@ -43,6 +43,7 @@ from fastdeploy.model_executor.layers.sample.sampler import Sampler, Speculative
from fastdeploy.model_executor.model_loader import get_model_loader
from fastdeploy.model_executor.ops.gpu import (
recover_decode_task,
set_data_ipc,
set_value_by_flags_and_idx,
share_external_data,
)
@@ -904,7 +905,7 @@ class GPUModelRunner(ModelRunnerBase):
)
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
if not profile and (self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed"):
if not profile and self.parallel_config.splitwise_role != "mixed":
cache_kvs_list = []
for i in range(self.model_config.num_hidden_layers):
key_cache = paddle.empty(shape=[], dtype=cache_type)
@@ -930,6 +931,15 @@ class GPUModelRunner(ModelRunnerBase):
fill_value=0,
dtype=cache_type,
)
if self.cache_config.enable_prefix_caching:
set_data_ipc(
cache_kvs[f"key_caches_{i}"],
f"key_caches_{i}_rank{local_rank}.device{self.device_id}",
)
set_data_ipc(
cache_kvs[f"value_caches_{i}"],
f"value_caches_{i}_rank{local_rank}.device{self.device_id}",
)
self.share_inputs["caches"] = list(cache_kvs.values())
for value in cache_kvs.values():
del value
@@ -1138,6 +1148,8 @@ class GPUModelRunner(ModelRunnerBase):
if task.chunk_idx > len(task.prefill_chunk_info):
continue
self.restore_chunked_prefill_request[task.request_id] = task
if len(self.restore_chunked_prefill_request) > 0:
self.share_inputs["not_need_stop"][0] = True
for id, task in list(self.restore_chunked_prefill_request.items()):
idx = task.idx
@@ -1182,7 +1194,7 @@ class GPUModelRunner(ModelRunnerBase):
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
self.share_inputs["prompt_lens"][idx : idx + 1] += token_chunk_size
self.share_inputs["step_idx"][idx : idx + 1] = 0
self.share_inputs["stop_flags"][idx : idx + 1] = False
if self.speculative_decoding and self.proposer.is_chunk_prefill_enabled():
self.proposer.update_task_chunk_prefill(task)
task.chunk_idx += 1
@@ -1507,12 +1519,12 @@ class GPUModelRunner(ModelRunnerBase):
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
# NOTE(liuzichang): Implement multi-layer MTP architecture in the future
num_layers = (
num_hidden_layers = (
self.model_config.num_hidden_layers + self.speculative_config.num_gpu_block_expand_ratio
if self.speculative_method in ["mtp"]
else self.model_config.num_hidden_layers
)
required_memory = byte_of_dtype * 2 * (self.cache_config.block_size * hidden_dim) * num_layers # k + v
required_memory = byte_of_dtype * 2 * (self.cache_config.block_size * hidden_dim) * num_hidden_layers # k + v
return required_memory
def not_need_stop(self) -> bool:

View File

@@ -408,7 +408,7 @@ class PaddleDisWorkerProc:
logger.info(f"------- num_blocks_global: {num_blocks_local} --------")
# wait engine launch cache_manager
if self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed":
if self.parallel_config.splitwise_role != "mixed":
launched_cache_manager_signal_data = np.zeros([1], dtype=np.int32)
self.launched_cache_manager_signal = IPCSignal(
name="launched_cache_manager_signal",