[Feature] Optimize prefix cache (#3208)

* [LLM] support ep

* Update worker_process.py

* Update expert_service.py

* Update worker_process.py

* format files

* optimize prefix cache

* optimize prefix cache

* optimize prefix cache

* pre commit format

* pre commit format

* pre commit format

* Update cache_messager.py
This commit is contained in:
ltd0924
2025-08-05 17:13:11 +08:00
committed by GitHub
parent 9f9971844f
commit dcf9c2daff
7 changed files with 314 additions and 147 deletions

View File

@@ -14,18 +14,72 @@
# limitations under the License.
"""
import argparse
import json
import math
import threading
import time
import threading
import numpy as np
import paddle
from fastdeploy.cache_manager.transfer_factory import IPCCommManager, RDMACommManager
from fastdeploy.config import SpeculativeConfig
from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal
from fastdeploy.model_executor.ops.gpu import set_data_ipc
from fastdeploy.utils import get_logger
logger = get_logger("cache_messager", "cache_messager.log")
def parse_args():
"""
从命令行解析参数
"""
parser = argparse.ArgumentParser("Cache Messager")
parser.add_argument(
"--splitwise_role",
type=str,
default="mixed",
help="splitwise role, can be decode, prefill or mixed",
)
parser.add_argument("--rank", type=int, default=0, help="current rank")
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--num_hidden_layers", type=int, default=1, help="model num layers")
parser.add_argument("--head_dim", type=int, default=1, help="model head dim")
parser.add_argument("--kv_num_head", type=int, default=1, help="model kv num head")
parser.add_argument("--rdma_port", type=str, default="", help="rmda port")
parser.add_argument("--mp_num", type=int, default=1, help="number of model parallel")
parser.add_argument("--engine_pid", type=str, default=None, help="engine pid")
parser.add_argument(
"--protocol",
type=str,
default="ipc",
help="cache transfer protocol, only surport ipc now",
)
parser.add_argument("--pod_ip", type=str, default="0.0.0.0", help="pod ip")
parser.add_argument(
"--engine_worker_queue_port",
type=int,
default=9923,
help="engine worker queue port",
)
parser.add_argument("--num_gpu_blocks", type=int, default=1, help="gpu cache block number")
parser.add_argument("--block_size", type=int, default=64, help="cache block size(tokens)")
parser.add_argument(
"--cache_dtype",
type=str,
default="bfloat16",
choices=["uint8", "bfloat16"],
help="cache dtype",
)
parser.add_argument(
"--speculative_config",
type=json.loads,
default="{}",
help="speculative config",
)
parser.add_argument("--local_data_parallel_id", type=int, default=0)
args = parser.parse_args()
return args
class CacheMessager:
@@ -43,7 +97,7 @@ class CacheMessager:
gpu_cache_kvs,
rank,
nranks,
num_layers,
num_hidden_layers,
gpu_id=0,
rdma_port=None,
):
@@ -57,7 +111,7 @@ class CacheMessager:
gpu_cache_kvs (dict): GPU kv cache
rank (int): current rank
nranks (int): global rank number
num_layers (int): model layer number
num_hidden_layers (int): model layer number
gpu_id (int, optional): GPU ID
rdma_port (int, optional): RDMA port
@@ -86,13 +140,13 @@ class CacheMessager:
logger.info(f"splitwise role: {splitwise_role}, {transfer_protocol}" f"rank: {rank}")
# 1. initialize the cache_k_ptr_list and cache_v_ptr_list
self.num_layers = num_layers
self.num_hidden_layers = num_hidden_layers
cache_k_ptr_list = []
cache_v_ptr_list = []
cache_k = []
cache_v = []
self.messager = {}
for layer_idx in range(self.num_layers):
for layer_idx in range(self.num_hidden_layers):
key_cache = self.gpu_cache_kvs[f"key_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
val_cache = self.gpu_cache_kvs[f"value_caches_{layer_idx}_rank{self.rank}_device{gpu_id}"]
cache_k.append(key_cache)
@@ -109,7 +163,7 @@ class CacheMessager:
if key_cache.dtype == paddle.bfloat16:
block_bytes *= 2
logger.info(
f"layers {num_layers} cache_shape: {cache_shape}, max_block_num: {max_block_num}, "
f"layers {num_hidden_layers} cache_shape: {cache_shape}, max_block_num: {max_block_num}, "
f"block_bytes: {block_bytes}, dtype: {key_cache.dtype}"
)
self.block_bytes = block_bytes
@@ -144,17 +198,13 @@ class CacheMessager:
self.cache_info = dict()
self.rank_id = self.rank + local_data_parallel_id * self.nranks # align with engine worker rank (paddle.distributed.launch)
layerwise_send_cache_thread = threading.Thread(target=self._prefill_layerwise_send_cache_thread)
layerwise_send_cache_thread.daemon = True
layerwise_send_cache_thread.start()
connect_rdma_thread = threading.Thread(target=self._handle_connect_task)
connect_rdma_thread.daemon = True
connect_rdma_thread.start()
logger.info(f"cache messager init finished, use {transfer_protocol}")
def _prefill_layerwise_send_cache_thread(self):
def prefill_layerwise_send_cache_thread(self):
"""
layerwise_send_cache_thread:
send cache to other instance
@@ -204,7 +254,7 @@ class CacheMessager:
cache_info = self.engine_worker_queue.get_cache_info()
if cache_info:
logger.debug(f"cache info {cache_info}")
logger.info(f"cache info {cache_info}")
for info in cache_info:
if info["request_id"] in self.cache_info:
self.cache_info[info["request_id"]].update(info)
@@ -223,7 +273,7 @@ class CacheMessager:
self.cache_info[info["request_id"]] = info
prefilled_layer_idx = layer_shm_value.value[0]
prefilled_step_idx = step_shm_value.value[0]
if prefilled_layer_idx == self.num_layers - 1:
if prefilled_layer_idx == self.num_hidden_layers - 1:
time.sleep(0.001)
prefilled_layer_idx = layer_shm_value.value[0]
prefilled_step_idx = step_shm_value.value[0]
@@ -234,7 +284,7 @@ class CacheMessager:
if not self.cache_info:
time.sleep(0.001)
continue
logger.debug(f"prefilled_layer_idx: {prefilled_layer_idx}, prefilled_step_idx: {prefilled_step_idx}")
logger.info(f"prefilled_layer_idx: {prefilled_layer_idx}, prefilled_step_idx: {prefilled_step_idx}")
for req_id, item in list(self.cache_info.items()):
if "status" not in item:
continue
@@ -251,7 +301,7 @@ class CacheMessager:
target_id = int(item["rdma_ports"][self.rank])
status = self.messager[current_transfer_protocol].connect(target_ip, target_id)
if not status:
logger.error(f"connect to {target_ip}:{target_id} failed")
logger.info(f"connect to {target_ip}:{target_id} failed")
item["status"] = "error"
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
@@ -263,7 +313,7 @@ class CacheMessager:
src_block_ids = paddle.to_tensor(item["src_block_ids"], dtype="int32", place="cpu")
dest_block_ids = paddle.to_tensor(item["dest_block_ids"], dtype="int32", place="cpu")
if item["current_id"] < prefilled_step_idx:
current_layer_idx = self.num_layers
current_layer_idx = self.num_hidden_layers
else:
current_layer_idx = prefilled_layer_idx + 1
@@ -281,7 +331,7 @@ class CacheMessager:
self.engine_worker_queue.finish_request_barrier.wait()
if self.rank == 0:
self.engine_worker_queue.put_finished_req([(item["request_id"], "write cache error")])
logger.error(
logger.info(
f"write cache failed, layer_idx: {layer_idx}, "
f"req_id: {item['request_id']}, dest_ip: {target_ip}"
)
@@ -292,14 +342,14 @@ class CacheMessager:
block_num = len(src_block_ids)
avg_time_per_block = cost_time * 1000 / block_num # ms
send_cache_speed = block_num * self.block_bytes / 1073741824 / cost_time # GB/s
logger.debug(
logger.info(
f"finish write cache for a layer, {item['request_id']}, {layer_idx}"
f" {current_transfer_protocol}"
f"block_num: {block_num}, send_cache_speed(GB/s): {round(send_cache_speed, 5)},"
f"avg_time per block(ms): {round(avg_time_per_block, 5)}"
)
item["layer_idx"] = current_layer_idx
if item["layer_idx"] == self.num_layers:
if item["layer_idx"] == self.num_hidden_layers:
if item["transfer_protocol"] == "ipc":
self.messager["ipc"].write_block_by_sync(target_id)
logger.info(f"finish write cache {item['request_id']}")
@@ -313,8 +363,8 @@ class CacheMessager:
self.last_layer_idx = prefilled_layer_idx
except Exception as e:
logger.error(f"prefill layerwise send cache thread has exception: {e}")
logger.info(f"prefill layerwise send cache thread has exception: {e}")
def _handle_connect_task(self):
while True:
try:
@@ -333,3 +383,90 @@ class CacheMessager:
self.engine_worker_queue.put_connect_rdma_task_response(response)
except Exception as e:
logger.error(f"handle_connect_task has exception: {e}")
def main():
device = args.device_id
rank = args.rank
paddle.set_device(f"gpu:{device}")
cache_type = args.cache_dtype
speculative_config = SpeculativeConfig(args.speculative_config)
num_extra_layers = speculative_config.num_extra_cache_layer
num_extra_layer_gpu_blocks = int(args.num_gpu_blocks * speculative_config.num_gpu_block_expand_ratio)
gpu_cache_kvs = {}
gpu_cache_k_tensors = []
gpu_cache_v_tensors = []
for i in range(args.num_hidden_layers + num_extra_layers):
num_gpu_blocks = args.num_gpu_blocks if i < args.num_hidden_layers else num_extra_layer_gpu_blocks
gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"] = paddle.full(
shape=[
num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
],
fill_value=0,
dtype=cache_type,
)
gpu_cache_k_tensors.append(gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"])
gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"] = paddle.full(
shape=[
num_gpu_blocks,
args.kv_num_head,
args.block_size,
args.head_dim,
],
fill_value=0,
dtype=cache_type,
)
gpu_cache_v_tensors.append(gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"])
set_data_ipc(
gpu_cache_kvs[f"key_caches_{i}_rank{rank}_device{device}"],
f"key_caches_{i}_rank{rank}.device{device}",
)
set_data_ipc(
gpu_cache_kvs[f"value_caches_{i}_rank{rank}_device{device}"],
f"value_caches_{i}_rank{rank}.device{device}",
)
cache_kv_size_byte = sum([tmp.numel() * 1 for key, tmp in gpu_cache_kvs.items()])
logger.info(f"device :{device}")
logger.info(f"cache_kv_size_byte : {cache_kv_size_byte}")
logger.info(f"done init cache (full) gmem alloc : {paddle.device.cuda.memory_allocated()}")
cache_messager = CacheMessager(
splitwise_role=args.splitwise_role,
transfer_protocol=args.protocol,
pod_ip=args.pod_ip,
engine_worker_queue_port=args.engine_worker_queue_port,
local_data_parallel_id=args.local_data_parallel_id,
gpu_cache_kvs=gpu_cache_kvs,
rank=rank,
nranks=args.mp_num,
num_hidden_layers=args.num_hidden_layers + num_extra_layers,
gpu_id=device,
rdma_port=args.rdma_port,
)
cache_ready_signal_data = np.zeros(shape=[args.mp_num], dtype=np.int32)
cache_ready_signal = IPCSignal(
name="cache_ready_signal",
array=cache_ready_signal_data,
dtype=np.int32,
suffix=args.engine_pid,
create=False,
)
cache_ready_signal.value[rank] = 1
cache_messager.prefill_layerwise_send_cache_thread()
if __name__ == "__main__":
args = parse_args()
logger = get_logger("cache_messager", "cache_messager.log")
logger.info("create cache messager...")
logger.info(f"{args}")
main()