[Backend] Add collect shape for pp-trt backend (#372)

* Add collect_shape attr

* add EnableTunedTensorRtDynamicShape

* Add collect shape python api

* Fix quant model not set trt dynamic shape

* Add shape info print

* Fix shape print

* Use CopyFromCpu instead of ShareExternalData

* Add ENABLE_TRT_BACKEND macro

* Add shared data with
This commit is contained in:
Jack Zhou
2022-10-20 17:02:56 +08:00
committed by GitHub
parent c28f4d6019
commit dccb737d8d
9 changed files with 251 additions and 20 deletions

View File

@@ -13,6 +13,8 @@
// limitations under the License. // limitations under the License.
#include "fastdeploy/backends/paddle/paddle_backend.h" #include "fastdeploy/backends/paddle/paddle_backend.h"
#include "fastdeploy/utils/path.h"
#include <sstream>
namespace fastdeploy { namespace fastdeploy {
@@ -31,21 +33,7 @@ void PaddleBackend::BuildOption(const PaddleBackendOption& option) {
use_static = true; use_static = true;
} }
config_.EnableTensorRtEngine(option.trt_option.max_workspace_size, 32, 3, precision, use_static); config_.EnableTensorRtEngine(option.trt_option.max_workspace_size, 32, 3, precision, use_static);
std::map<std::string, std::vector<int>> max_shape; SetTRTDynamicShapeToConfig(option);
std::map<std::string, std::vector<int>> min_shape;
std::map<std::string, std::vector<int>> opt_shape;
for (const auto& item : option.trt_option.min_shape) {
auto max_iter = option.trt_option.max_shape.find(item.first);
auto opt_iter = option.trt_option.opt_shape.find(item.first);
FDASSERT(max_iter != option.trt_option.max_shape.end(), "Cannot find %s in TrtBackendOption::min_shape.", item.first.c_str());
FDASSERT(opt_iter != option.trt_option.opt_shape.end(), "Cannot find %s in TrtBackendOption::opt_shape.", item.first.c_str());
max_shape[item.first].assign(max_iter->second.begin(), max_iter->second.end());
opt_shape[item.first].assign(opt_iter->second.begin(), opt_iter->second.end());
min_shape[item.first].assign(item.second.begin(), item.second.end());
}
if (min_shape.size() > 0) {
config_.SetTRTDynamicShapeInfo(min_shape, max_shape, opt_shape);
}
#else #else
FDWARNING << "The FastDeploy is not compiled with TensorRT backend, so will fallback to GPU with Paddle Inference Backend." << std::endl; FDWARNING << "The FastDeploy is not compiled with TensorRT backend, so will fallback to GPU with Paddle Inference Backend." << std::endl;
#endif #endif
@@ -97,6 +85,17 @@ bool PaddleBackend::InitFromPaddle(const std::string& model_file,
if (reader.is_quantize_model) { if (reader.is_quantize_model) {
if (option.use_gpu) { if (option.use_gpu) {
FDWARNING << "The loaded model is a quantized model, while inference on GPU, please use TensorRT backend to get better performance." << std::endl; FDWARNING << "The loaded model is a quantized model, while inference on GPU, please use TensorRT backend to get better performance." << std::endl;
if (option.enable_trt) {
#ifdef ENABLE_TRT_BACKEND
bool use_static = false;
if (option.trt_option.serialize_file != "") {
FDWARNING << "Detect that tensorrt cache file has been set to " << option.trt_option.serialize_file << ", but while enable paddle2trt, please notice that the cache file will save to the directory where paddle model saved." << std::endl;
use_static = true;
}
config_.EnableTensorRtEngine(option.trt_option.max_workspace_size, 32, 3, paddle_infer::PrecisionType::kInt8, use_static, false);
SetTRTDynamicShapeToConfig(option);
#endif
}
} }
if (option.enable_mkldnn) { if (option.enable_mkldnn) {
config_.EnableMkldnnInt8(); config_.EnableMkldnnInt8();
@@ -123,7 +122,31 @@ bool PaddleBackend::InitFromPaddle(const std::string& model_file,
outputs_desc_[i].shape.assign(shape.begin(), shape.end()); outputs_desc_[i].shape.assign(shape.begin(), shape.end());
outputs_desc_[i].dtype = ReaderDataTypeToFD(reader.outputs[i].dtype); outputs_desc_[i].dtype = ReaderDataTypeToFD(reader.outputs[i].dtype);
} }
#ifdef ENABLE_TRT_BACKEND
if (option.collect_shape) {
// Set the shape info file.
auto curr_model_dir = GetDirFromPath(model_file);
std::string shape_range_info = PathJoin(curr_model_dir, "shape_range_info.pbtxt");
if (!CheckFileExists(shape_range_info)) {
FDINFO << "Start generating shape range info file." << std::endl;
paddle_infer::Config analysis_config;
analysis_config.SetModel(model_file, params_file);
analysis_config.CollectShapeRangeInfo(shape_range_info);
auto predictor_tmp = paddle_infer::CreatePredictor(analysis_config);
std::map<std::string, std::vector<int>> max_shape;
std::map<std::string, std::vector<int>> min_shape;
std::map<std::string, std::vector<int>> opt_shape;
GetDynamicShapeFromOption(option, &max_shape, &min_shape, &opt_shape);
// Need to run once to get the shape range info file.
CollectShapeRun(predictor_tmp.get(), max_shape);
CollectShapeRun(predictor_tmp.get(), min_shape);
CollectShapeRun(predictor_tmp.get(), opt_shape);
FDINFO << "Finish generating shape range info file." << std::endl;
}
FDINFO << "Start loading shape range info file "<< shape_range_info << " to set TensorRT dynamic shape." << std::endl;
config_.EnableTunedTensorRtDynamicShape(shape_range_info, false);
}
#endif
predictor_ = paddle_infer::CreatePredictor(config_); predictor_ = paddle_infer::CreatePredictor(config_);
initialized_ = true; initialized_ = true;
return true; return true;
@@ -172,4 +195,87 @@ bool PaddleBackend::Infer(std::vector<FDTensor>& inputs,
return true; return true;
} }
#ifdef ENABLE_TRT_BACKEND
void PaddleBackend::SetTRTDynamicShapeToConfig(const PaddleBackendOption& option) {
std::map<std::string, std::vector<int>> max_shape;
std::map<std::string, std::vector<int>> min_shape;
std::map<std::string, std::vector<int>> opt_shape;
GetDynamicShapeFromOption(option, &max_shape, &min_shape, &opt_shape);
FDINFO << "Start setting trt dynamic shape." << std::endl;
if (min_shape.size() > 0) {
config_.SetTRTDynamicShapeInfo(min_shape, max_shape, opt_shape);
}
FDINFO << "Finish setting trt dynamic shape." << std::endl;
}
void PaddleBackend::GetDynamicShapeFromOption(const PaddleBackendOption& option,
std::map<std::string, std::vector<int>>* max_shape,
std::map<std::string, std::vector<int>>* min_shape,
std::map<std::string, std::vector<int>>* opt_shape) const {
auto print_shape = [](const std::vector<int>& shape) -> std::string {
std::ostringstream oss;
oss << "[";
for (int i = 0; i < shape.size(); ++i) {
oss << shape[i];
if (i < shape.size() - 1) {
oss << ", ";
}
}
oss << "]";
return oss.str();
};
for (const auto& item : option.trt_option.min_shape) {
auto max_iter = option.trt_option.max_shape.find(item.first);
auto opt_iter = option.trt_option.opt_shape.find(item.first);
FDASSERT(max_iter != option.trt_option.max_shape.end(), "Cannot find %s in TrtBackendOption::min_shape.", item.first.c_str());
FDASSERT(opt_iter != option.trt_option.opt_shape.end(), "Cannot find %s in TrtBackendOption::opt_shape.", item.first.c_str());
(*max_shape)[item.first].assign(max_iter->second.begin(), max_iter->second.end());
(*opt_shape)[item.first].assign(opt_iter->second.begin(), opt_iter->second.end());
(*min_shape)[item.first].assign(item.second.begin(), item.second.end());
FDINFO << item.first << ": the max shape = " << print_shape(max_iter->second)
<< ", the min shape = " << print_shape(item.second)
<< ", the opt shape = " << print_shape(opt_iter->second) << std::endl;
}
}
void PaddleBackend::CollectShapeRun(paddle_infer::Predictor* predictor,
const std::map<std::string, std::vector<int>>& shape) const {
auto input_names = predictor->GetInputNames();
auto input_type = predictor->GetInputTypes();
for(auto name : input_names) {
FDASSERT(shape.find(name) != shape.end() && input_type.find(name) != input_type.end(),
"Paddle Input name [%s] is not one of the trt dynamic shape.", name.c_str());
auto tensor = predictor->GetInputHandle(name);
auto shape_value = shape.at(name);
int shape_num = std::accumulate(shape_value.begin(), shape_value.end(), 1,
std::multiplies<int>());
tensor->Reshape(shape_value);
auto dtype = input_type[name];
switch (dtype) {
case paddle_infer::DataType::FLOAT32: {
std::vector<float> input_data(shape_num, 1.0);
tensor->CopyFromCpu(input_data.data());
break;
}
case paddle_infer::DataType::INT32: {
std::vector<int> input_data(shape_num, 1);
tensor->CopyFromCpu(input_data.data());
break;
}
case paddle_infer::DataType::INT64: {
std::vector<int64_t> input_data(shape_num, 1);
tensor->CopyFromCpu(input_data.data());
break;
}
default: {
FDASSERT(false, "Input data Paddle backend only supports FP32/INT32/INT64 currently.");
break;
}
}
}
predictor->Run();
}
#endif
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -44,6 +44,7 @@ struct PaddleBackendOption {
bool enable_trt = false; bool enable_trt = false;
#ifdef ENABLE_TRT_BACKEND #ifdef ENABLE_TRT_BACKEND
TrtBackendOption trt_option; TrtBackendOption trt_option;
bool collect_shape = false;
#endif #endif
int mkldnn_cache_size = 1; int mkldnn_cache_size = 1;
@@ -95,6 +96,15 @@ class PaddleBackend : public BaseBackend {
std::vector<TensorInfo> GetOutputInfos() override; std::vector<TensorInfo> GetOutputInfos() override;
private: private:
#ifdef ENABLE_TRT_BACKEND
void CollectShapeRun(paddle_infer::Predictor* predictor,
const std::map<std::string, std::vector<int>>& shape) const;
void GetDynamicShapeFromOption(const PaddleBackendOption& option,
std::map<std::string, std::vector<int>>* max_shape,
std::map<std::string, std::vector<int>>* min_shape,
std::map<std::string, std::vector<int>>* opt_shape) const;
void SetTRTDynamicShapeToConfig(const PaddleBackendOption& option);
#endif
paddle_infer::Config config_; paddle_infer::Config config_;
std::shared_ptr<paddle_infer::Predictor> predictor_; std::shared_ptr<paddle_infer::Predictor> predictor_;
std::vector<TensorInfo> inputs_desc_; std::vector<TensorInfo> inputs_desc_;

View File

@@ -29,16 +29,28 @@ void ShareTensorFromFDTensor(paddle_infer::Tensor* tensor,
tensor->Reshape(shape); tensor->Reshape(shape);
auto place = ConvertFDDeviceToPlace(fd_tensor.device); auto place = ConvertFDDeviceToPlace(fd_tensor.device);
if (fd_tensor.dtype == FDDataType::FP32) { if (fd_tensor.dtype == FDDataType::FP32) {
tensor->ShareExternalData(static_cast<const float*>(fd_tensor.Data()), if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const float*>(fd_tensor.Data()),
shape, place); shape, place);
} else {
tensor->CopyFromCpu(static_cast<const float*>(fd_tensor.Data()));
}
return; return;
} else if (fd_tensor.dtype == FDDataType::INT32) { } else if (fd_tensor.dtype == FDDataType::INT32) {
tensor->ShareExternalData(static_cast<const int32_t*>(fd_tensor.Data()), if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const int32_t*>(fd_tensor.Data()),
shape, place); shape, place);
} else {
tensor->CopyFromCpu(static_cast<const int32_t*>(fd_tensor.Data()));
}
return; return;
} else if (fd_tensor.dtype == FDDataType::INT64) { } else if (fd_tensor.dtype == FDDataType::INT64) {
tensor->ShareExternalData(static_cast<const int64_t*>(fd_tensor.Data()), if (place == paddle_infer::PlaceType::kGPU) {
tensor->ShareExternalData(static_cast<const int64_t*>(fd_tensor.Data()),
shape, place); shape, place);
} else {
tensor->CopyFromCpu(static_cast<const int64_t*>(fd_tensor.Data()));
}
return; return;
} }
FDASSERT(false, "Unexpected data type(%s) while infer with PaddleBackend.", FDASSERT(false, "Unexpected data type(%s) while infer with PaddleBackend.",

View File

@@ -44,6 +44,8 @@ void BindRuntime(pybind11::module& m) {
.def("enable_trt_fp16", &RuntimeOption::EnableTrtFP16) .def("enable_trt_fp16", &RuntimeOption::EnableTrtFP16)
.def("disable_trt_fp16", &RuntimeOption::DisableTrtFP16) .def("disable_trt_fp16", &RuntimeOption::DisableTrtFP16)
.def("set_trt_cache_file", &RuntimeOption::SetTrtCacheFile) .def("set_trt_cache_file", &RuntimeOption::SetTrtCacheFile)
.def("enable_paddle_trt_collect_shape", &RuntimeOption::EnablePaddleTrtCollectShape)
.def("disable_paddle_trt_collect_shape", &RuntimeOption::DisablePaddleTrtCollectShape)
.def_readwrite("model_file", &RuntimeOption::model_file) .def_readwrite("model_file", &RuntimeOption::model_file)
.def_readwrite("params_file", &RuntimeOption::params_file) .def_readwrite("params_file", &RuntimeOption::params_file)
.def_readwrite("model_format", &RuntimeOption::model_format) .def_readwrite("model_format", &RuntimeOption::model_format)

View File

@@ -390,6 +390,14 @@ bool Runtime::Compile(std::vector<std::vector<FDTensor>>& prewarm_tensors,
return true; return true;
} }
void RuntimeOption::EnablePaddleTrtCollectShape() {
pd_collect_shape = true;
}
void RuntimeOption::DisablePaddleTrtCollectShape() {
pd_collect_shape = false;
}
bool Runtime::Init(const RuntimeOption& _option) { bool Runtime::Init(const RuntimeOption& _option) {
option = _option; option = _option;
if (option.model_format == ModelFormat::AUTOREC) { if (option.model_format == ModelFormat::AUTOREC) {
@@ -498,6 +506,7 @@ void Runtime::CreatePaddleBackend() {
#ifdef ENABLE_TRT_BACKEND #ifdef ENABLE_TRT_BACKEND
if (pd_option.use_gpu && option.pd_enable_trt) { if (pd_option.use_gpu && option.pd_enable_trt) {
pd_option.enable_trt = true; pd_option.enable_trt = true;
pd_option.collect_shape = option.pd_collect_shape;
auto trt_option = TrtBackendOption(); auto trt_option = TrtBackendOption();
trt_option.gpu_id = option.device_id; trt_option.gpu_id = option.device_id;
trt_option.enable_fp16 = option.trt_enable_fp16; trt_option.enable_fp16 = option.trt_enable_fp16;

View File

@@ -204,6 +204,17 @@ struct FASTDEPLOY_DECL RuntimeOption {
*/ */
void SetTrtCacheFile(const std::string& cache_file_path); void SetTrtCacheFile(const std::string& cache_file_path);
/**
* @brief Enable to collect shape in paddle trt backend
*/
void EnablePaddleTrtCollectShape();
/**
* @brief Disable to collect shape in paddle trt backend
*/
void DisablePaddleTrtCollectShape();
Backend backend = Backend::UNKNOWN; Backend backend = Backend::UNKNOWN;
// for cpu inference and preprocess // for cpu inference and preprocess
// default will let the backend choose their own default value // default will let the backend choose their own default value
@@ -225,6 +236,7 @@ struct FASTDEPLOY_DECL RuntimeOption {
bool pd_enable_mkldnn = true; bool pd_enable_mkldnn = true;
bool pd_enable_log_info = false; bool pd_enable_log_info = false;
bool pd_enable_trt = false; bool pd_enable_trt = false;
bool pd_collect_shape = false;
int pd_mkldnn_cache_size = 1; int pd_mkldnn_cache_size = 1;
std::vector<std::string> pd_delete_pass_names; std::vector<std::string> pd_delete_pass_names;

74
fastdeploy/utils/path.h Normal file
View File

@@ -0,0 +1,74 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <fstream>
#ifdef _MSC_VER
#define PATH_SEP "\\"
#else
#define PATH_SEP "/"
#endif
namespace fastdeploy {
inline std::string PathJoin(const std::vector<std::string>& paths,
const std::string& sep = PATH_SEP) {
if (paths.size() == 1) {
return paths[0];
}
std::string filepath = "";
for (const auto& path : paths) {
if (filepath == "") {
filepath += path;
continue;
}
if (path[0] == sep[0] || filepath.back() == sep[0]) {
filepath += path;
} else {
filepath += sep + path;
}
}
return filepath;
}
inline std::string PathJoin(const std::string& folder,
const std::string& filename,
const std::string& sep = PATH_SEP) {
return PathJoin(std::vector<std::string>{folder, filename}, sep);
}
inline std::string GetDirFromPath(const std::string& path) {
auto pos = path.find_last_of(PATH_SEP);
if (pos == std::string::npos) {
return "";
}
// The root path in UNIX systems
if (pos == 0) {
return "/";
}
return path.substr(0, pos);
}
inline bool CheckFileExists(const std::string& path) {
std::fstream fin(path, std::ios::in);
if (!fin) {
return false;
}
return true;
}
} // namespace fastdeploy

View File

@@ -329,6 +329,12 @@ class RuntimeOption:
""" """
return self._option.set_trt_max_workspace_size(trt_max_workspace_size) return self._option.set_trt_max_workspace_size(trt_max_workspace_size)
def enable_paddle_trt_collect_shape(self):
return self._option.enable_paddle_trt_collect_shape()
def disable_paddle_trt_collect_shape(self):
return self._option.disable_paddle_trt_collect_shape()
def __repr__(self): def __repr__(self):
attrs = dir(self._option) attrs = dir(self._option)
message = "RuntimeOption(\n" message = "RuntimeOption(\n"

View File

@@ -26,7 +26,7 @@ def process_paddle_inference(paddle_inference_so_file):
rpaths = [ rpaths = [
"$ORIGIN", "$ORIGIN/../../third_party/install/mkldnn/lib/", "$ORIGIN", "$ORIGIN/../../third_party/install/mkldnn/lib/",
"$ORIGIN/../../third_party/install/mklml/lib/", "$ORIGIN/../../third_party/install/mklml/lib/",
"$ORIGIN/../../../tensorrt/lib" "$ORIGIN/../../../tensorrt/lib/"
] ]
patchelf_exe = os.getenv("PATCHELF_EXE", "patchelf") patchelf_exe = os.getenv("PATCHELF_EXE", "patchelf")