mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-17 22:21:48 +08:00
[Backend] Add collect shape for pp-trt backend (#372)
* Add collect_shape attr * add EnableTunedTensorRtDynamicShape * Add collect shape python api * Fix quant model not set trt dynamic shape * Add shape info print * Fix shape print * Use CopyFromCpu instead of ShareExternalData * Add ENABLE_TRT_BACKEND macro * Add shared data with
This commit is contained in:
@@ -13,6 +13,8 @@
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/backends/paddle/paddle_backend.h"
|
||||
#include "fastdeploy/utils/path.h"
|
||||
#include <sstream>
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
@@ -31,21 +33,7 @@ void PaddleBackend::BuildOption(const PaddleBackendOption& option) {
|
||||
use_static = true;
|
||||
}
|
||||
config_.EnableTensorRtEngine(option.trt_option.max_workspace_size, 32, 3, precision, use_static);
|
||||
std::map<std::string, std::vector<int>> max_shape;
|
||||
std::map<std::string, std::vector<int>> min_shape;
|
||||
std::map<std::string, std::vector<int>> opt_shape;
|
||||
for (const auto& item : option.trt_option.min_shape) {
|
||||
auto max_iter = option.trt_option.max_shape.find(item.first);
|
||||
auto opt_iter = option.trt_option.opt_shape.find(item.first);
|
||||
FDASSERT(max_iter != option.trt_option.max_shape.end(), "Cannot find %s in TrtBackendOption::min_shape.", item.first.c_str());
|
||||
FDASSERT(opt_iter != option.trt_option.opt_shape.end(), "Cannot find %s in TrtBackendOption::opt_shape.", item.first.c_str());
|
||||
max_shape[item.first].assign(max_iter->second.begin(), max_iter->second.end());
|
||||
opt_shape[item.first].assign(opt_iter->second.begin(), opt_iter->second.end());
|
||||
min_shape[item.first].assign(item.second.begin(), item.second.end());
|
||||
}
|
||||
if (min_shape.size() > 0) {
|
||||
config_.SetTRTDynamicShapeInfo(min_shape, max_shape, opt_shape);
|
||||
}
|
||||
SetTRTDynamicShapeToConfig(option);
|
||||
#else
|
||||
FDWARNING << "The FastDeploy is not compiled with TensorRT backend, so will fallback to GPU with Paddle Inference Backend." << std::endl;
|
||||
#endif
|
||||
@@ -97,6 +85,17 @@ bool PaddleBackend::InitFromPaddle(const std::string& model_file,
|
||||
if (reader.is_quantize_model) {
|
||||
if (option.use_gpu) {
|
||||
FDWARNING << "The loaded model is a quantized model, while inference on GPU, please use TensorRT backend to get better performance." << std::endl;
|
||||
if (option.enable_trt) {
|
||||
#ifdef ENABLE_TRT_BACKEND
|
||||
bool use_static = false;
|
||||
if (option.trt_option.serialize_file != "") {
|
||||
FDWARNING << "Detect that tensorrt cache file has been set to " << option.trt_option.serialize_file << ", but while enable paddle2trt, please notice that the cache file will save to the directory where paddle model saved." << std::endl;
|
||||
use_static = true;
|
||||
}
|
||||
config_.EnableTensorRtEngine(option.trt_option.max_workspace_size, 32, 3, paddle_infer::PrecisionType::kInt8, use_static, false);
|
||||
SetTRTDynamicShapeToConfig(option);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
if (option.enable_mkldnn) {
|
||||
config_.EnableMkldnnInt8();
|
||||
@@ -123,7 +122,31 @@ bool PaddleBackend::InitFromPaddle(const std::string& model_file,
|
||||
outputs_desc_[i].shape.assign(shape.begin(), shape.end());
|
||||
outputs_desc_[i].dtype = ReaderDataTypeToFD(reader.outputs[i].dtype);
|
||||
}
|
||||
|
||||
#ifdef ENABLE_TRT_BACKEND
|
||||
if (option.collect_shape) {
|
||||
// Set the shape info file.
|
||||
auto curr_model_dir = GetDirFromPath(model_file);
|
||||
std::string shape_range_info = PathJoin(curr_model_dir, "shape_range_info.pbtxt");
|
||||
if (!CheckFileExists(shape_range_info)) {
|
||||
FDINFO << "Start generating shape range info file." << std::endl;
|
||||
paddle_infer::Config analysis_config;
|
||||
analysis_config.SetModel(model_file, params_file);
|
||||
analysis_config.CollectShapeRangeInfo(shape_range_info);
|
||||
auto predictor_tmp = paddle_infer::CreatePredictor(analysis_config);
|
||||
std::map<std::string, std::vector<int>> max_shape;
|
||||
std::map<std::string, std::vector<int>> min_shape;
|
||||
std::map<std::string, std::vector<int>> opt_shape;
|
||||
GetDynamicShapeFromOption(option, &max_shape, &min_shape, &opt_shape);
|
||||
// Need to run once to get the shape range info file.
|
||||
CollectShapeRun(predictor_tmp.get(), max_shape);
|
||||
CollectShapeRun(predictor_tmp.get(), min_shape);
|
||||
CollectShapeRun(predictor_tmp.get(), opt_shape);
|
||||
FDINFO << "Finish generating shape range info file." << std::endl;
|
||||
}
|
||||
FDINFO << "Start loading shape range info file "<< shape_range_info << " to set TensorRT dynamic shape." << std::endl;
|
||||
config_.EnableTunedTensorRtDynamicShape(shape_range_info, false);
|
||||
}
|
||||
#endif
|
||||
predictor_ = paddle_infer::CreatePredictor(config_);
|
||||
initialized_ = true;
|
||||
return true;
|
||||
@@ -172,4 +195,87 @@ bool PaddleBackend::Infer(std::vector<FDTensor>& inputs,
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifdef ENABLE_TRT_BACKEND
|
||||
void PaddleBackend::SetTRTDynamicShapeToConfig(const PaddleBackendOption& option) {
|
||||
std::map<std::string, std::vector<int>> max_shape;
|
||||
std::map<std::string, std::vector<int>> min_shape;
|
||||
std::map<std::string, std::vector<int>> opt_shape;
|
||||
GetDynamicShapeFromOption(option, &max_shape, &min_shape, &opt_shape);
|
||||
FDINFO << "Start setting trt dynamic shape." << std::endl;
|
||||
if (min_shape.size() > 0) {
|
||||
config_.SetTRTDynamicShapeInfo(min_shape, max_shape, opt_shape);
|
||||
}
|
||||
FDINFO << "Finish setting trt dynamic shape." << std::endl;
|
||||
}
|
||||
|
||||
void PaddleBackend::GetDynamicShapeFromOption(const PaddleBackendOption& option,
|
||||
std::map<std::string, std::vector<int>>* max_shape,
|
||||
std::map<std::string, std::vector<int>>* min_shape,
|
||||
std::map<std::string, std::vector<int>>* opt_shape) const {
|
||||
auto print_shape = [](const std::vector<int>& shape) -> std::string {
|
||||
std::ostringstream oss;
|
||||
oss << "[";
|
||||
for (int i = 0; i < shape.size(); ++i) {
|
||||
oss << shape[i];
|
||||
if (i < shape.size() - 1) {
|
||||
oss << ", ";
|
||||
}
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
};
|
||||
for (const auto& item : option.trt_option.min_shape) {
|
||||
auto max_iter = option.trt_option.max_shape.find(item.first);
|
||||
auto opt_iter = option.trt_option.opt_shape.find(item.first);
|
||||
FDASSERT(max_iter != option.trt_option.max_shape.end(), "Cannot find %s in TrtBackendOption::min_shape.", item.first.c_str());
|
||||
FDASSERT(opt_iter != option.trt_option.opt_shape.end(), "Cannot find %s in TrtBackendOption::opt_shape.", item.first.c_str());
|
||||
(*max_shape)[item.first].assign(max_iter->second.begin(), max_iter->second.end());
|
||||
(*opt_shape)[item.first].assign(opt_iter->second.begin(), opt_iter->second.end());
|
||||
(*min_shape)[item.first].assign(item.second.begin(), item.second.end());
|
||||
FDINFO << item.first << ": the max shape = " << print_shape(max_iter->second)
|
||||
<< ", the min shape = " << print_shape(item.second)
|
||||
<< ", the opt shape = " << print_shape(opt_iter->second) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void PaddleBackend::CollectShapeRun(paddle_infer::Predictor* predictor,
|
||||
const std::map<std::string, std::vector<int>>& shape) const {
|
||||
auto input_names = predictor->GetInputNames();
|
||||
auto input_type = predictor->GetInputTypes();
|
||||
for(auto name : input_names) {
|
||||
FDASSERT(shape.find(name) != shape.end() && input_type.find(name) != input_type.end(),
|
||||
"Paddle Input name [%s] is not one of the trt dynamic shape.", name.c_str());
|
||||
auto tensor = predictor->GetInputHandle(name);
|
||||
auto shape_value = shape.at(name);
|
||||
int shape_num = std::accumulate(shape_value.begin(), shape_value.end(), 1,
|
||||
std::multiplies<int>());
|
||||
tensor->Reshape(shape_value);
|
||||
auto dtype = input_type[name];
|
||||
switch (dtype) {
|
||||
case paddle_infer::DataType::FLOAT32: {
|
||||
std::vector<float> input_data(shape_num, 1.0);
|
||||
tensor->CopyFromCpu(input_data.data());
|
||||
break;
|
||||
}
|
||||
case paddle_infer::DataType::INT32: {
|
||||
std::vector<int> input_data(shape_num, 1);
|
||||
tensor->CopyFromCpu(input_data.data());
|
||||
break;
|
||||
}
|
||||
case paddle_infer::DataType::INT64: {
|
||||
std::vector<int64_t> input_data(shape_num, 1);
|
||||
tensor->CopyFromCpu(input_data.data());
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
FDASSERT(false, "Input data Paddle backend only supports FP32/INT32/INT64 currently.");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
predictor->Run();
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
} // namespace fastdeploy
|
||||
|
Reference in New Issue
Block a user