mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
qwen loader (#3057)
This commit is contained in:
88
fastdeploy/model_executor/model_loader/default_loader.py
Normal file
88
fastdeploy/model_executor/model_loader/default_loader.py
Normal file
@@ -0,0 +1,88 @@
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
|
||||
from fastdeploy.model_executor.load_weight_utils import (
|
||||
load_composite_checkpoint,
|
||||
measure_time,
|
||||
)
|
||||
from fastdeploy.model_executor.model_loader.base_loader import BaseModelLoader
|
||||
from fastdeploy.model_executor.model_loader.utils import get_pretrain_cls
|
||||
from fastdeploy.model_executor.models.model_base import ModelRegistry
|
||||
from fastdeploy.platforms import current_platform
|
||||
|
||||
|
||||
class DefaultModelLoader(BaseModelLoader):
|
||||
"""ModelLoader that can load registered models"""
|
||||
|
||||
def __init__(self, load_config: LoadConfig):
|
||||
super().__init__(load_config)
|
||||
logger.info("Load the model and weights using DefaultModelLoader")
|
||||
|
||||
def download_model(self, model_config: ModelConfig) -> None:
|
||||
"""download_model"""
|
||||
pass
|
||||
|
||||
def clean_memory_fragments(self, state_dict: dict) -> None:
|
||||
"""clean_memory_fragments"""
|
||||
if current_platform.is_cuda():
|
||||
if state_dict:
|
||||
for k, v in state_dict.items():
|
||||
if isinstance(v, paddle.Tensor):
|
||||
v.value().get_tensor()._clear()
|
||||
paddle.device.cuda.empty_cache()
|
||||
paddle.device.synchronize()
|
||||
|
||||
@measure_time
|
||||
def load_weights(self, model, fd_config: FDConfig, architectures: str) -> None:
|
||||
model_class = get_pretrain_cls(architectures)
|
||||
state_dict = load_composite_checkpoint(
|
||||
fd_config.model_config.model,
|
||||
model_class,
|
||||
fd_config,
|
||||
return_numpy=True,
|
||||
)
|
||||
model.set_state_dict(state_dict)
|
||||
self.clean_memory_fragments(state_dict)
|
||||
|
||||
def load_model(self, fd_config: FDConfig) -> nn.Layer:
|
||||
context = paddle.LazyGuard()
|
||||
architectures = fd_config.model_config.architectures[0]
|
||||
logger.info(f"Starting to load model {architectures}")
|
||||
|
||||
if fd_config.load_config.dynamic_load_weight:
|
||||
# register rl model
|
||||
import fastdeploy.rl # noqa
|
||||
|
||||
architectures = architectures + "RL"
|
||||
|
||||
with context:
|
||||
model_cls = ModelRegistry.get_class(architectures)
|
||||
model = model_cls(fd_config)
|
||||
|
||||
model.eval()
|
||||
|
||||
# RL model not need set_state_dict
|
||||
if fd_config.load_config.dynamic_load_weight:
|
||||
return model
|
||||
|
||||
# TODO(gongshaotian): Now, only support safetensor
|
||||
self.load_weights(model, fd_config, architectures)
|
||||
return model
|
Reference in New Issue
Block a user