qwen loader (#3057)

This commit is contained in:
bukejiyu
2025-07-30 19:09:38 +08:00
committed by GitHub
parent 28fff1b035
commit db698bda01
22 changed files with 494 additions and 92 deletions

View File

@@ -0,0 +1,32 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from fastdeploy.config import LoadChoices, LoadConfig
from fastdeploy.model_executor.model_loader.base_loader import BaseModelLoader
from fastdeploy.model_executor.model_loader.default_loader import DefaultModelLoader
from fastdeploy.model_executor.model_loader.new_loader import NewModelLoader
def get_model_loader(load_config: LoadConfig) -> BaseModelLoader:
"""get_model_loader"""
if load_config.load_choices == LoadChoices.NEW_LOADER:
return NewModelLoader(load_config)
return DefaultModelLoader(load_config)
__all__ = ["get_model_loader"]

View File

@@ -0,0 +1,38 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from abc import ABC, abstractmethod
from paddle import nn
from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
class BaseModelLoader(ABC):
"""Base class for model loaders."""
def __init__(self, load_config: LoadConfig):
self.load_config = load_config
@abstractmethod
def download_model(self, load_config: ModelConfig) -> None:
"""Download a model so that it can be immediately loaded."""
raise NotImplementedError
@abstractmethod
def load_model(self, fd_config: FDConfig) -> nn.Layer:
"""Load a model with the given configurations."""
raise NotImplementedError

View File

@@ -0,0 +1,88 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
from fastdeploy.model_executor.load_weight_utils import (
load_composite_checkpoint,
measure_time,
)
from fastdeploy.model_executor.model_loader.base_loader import BaseModelLoader
from fastdeploy.model_executor.model_loader.utils import get_pretrain_cls
from fastdeploy.model_executor.models.model_base import ModelRegistry
from fastdeploy.platforms import current_platform
class DefaultModelLoader(BaseModelLoader):
"""ModelLoader that can load registered models"""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
logger.info("Load the model and weights using DefaultModelLoader")
def download_model(self, model_config: ModelConfig) -> None:
"""download_model"""
pass
def clean_memory_fragments(self, state_dict: dict) -> None:
"""clean_memory_fragments"""
if current_platform.is_cuda():
if state_dict:
for k, v in state_dict.items():
if isinstance(v, paddle.Tensor):
v.value().get_tensor()._clear()
paddle.device.cuda.empty_cache()
paddle.device.synchronize()
@measure_time
def load_weights(self, model, fd_config: FDConfig, architectures: str) -> None:
model_class = get_pretrain_cls(architectures)
state_dict = load_composite_checkpoint(
fd_config.model_config.model,
model_class,
fd_config,
return_numpy=True,
)
model.set_state_dict(state_dict)
self.clean_memory_fragments(state_dict)
def load_model(self, fd_config: FDConfig) -> nn.Layer:
context = paddle.LazyGuard()
architectures = fd_config.model_config.architectures[0]
logger.info(f"Starting to load model {architectures}")
if fd_config.load_config.dynamic_load_weight:
# register rl model
import fastdeploy.rl # noqa
architectures = architectures + "RL"
with context:
model_cls = ModelRegistry.get_class(architectures)
model = model_cls(fd_config)
model.eval()
# RL model not need set_state_dict
if fd_config.load_config.dynamic_load_weight:
return model
# TODO(gongshaotian): Now, only support safetensor
self.load_weights(model, fd_config, architectures)
return model

View File

@@ -0,0 +1,74 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
from fastdeploy.model_executor.load_weight_utils import (
get_all_safetensors,
measure_time,
safetensors_weights_iterator,
)
from fastdeploy.model_executor.model_loader.base_loader import BaseModelLoader
from fastdeploy.model_executor.models.model_base import ModelRegistry
from fastdeploy.platforms import current_platform
class NewModelLoader(BaseModelLoader):
"""ModelLoader that can load registered models"""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
def download_model(self, model_config: ModelConfig) -> None:
pass
def clean_memory_fragments(self) -> None:
"""clean_memory_fragments"""
if current_platform.is_cuda():
paddle.device.cuda.empty_cache()
paddle.device.synchronize()
@measure_time
def load_weights(self, model, fd_config: FDConfig) -> None:
_, safetensor_files = get_all_safetensors(fd_config.model_config.model)
weights_iterator = safetensors_weights_iterator(safetensor_files)
model.load_weights(weights_iterator)
self.clean_memory_fragments()
def load_model(self, fd_config: FDConfig) -> nn.Layer:
architectures = fd_config.model_config.architectures[0]
logger.info(f"Starting to load model {architectures}")
if fd_config.load_config.dynamic_load_weight:
# register rl model
import fastdeploy.rl # noqa
architectures = architectures + "RL"
model_cls = ModelRegistry.get_class(architectures)
model = model_cls(fd_config)
model.eval()
# RL model not need set_state_dict
if fd_config.load_config.dynamic_load_weight:
return model
self.load_weights(model, fd_config)
return model

View File

@@ -0,0 +1,43 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from paddleformers.transformers import PretrainedModel
from fastdeploy.model_executor.models.deepseek_v3 import DeepSeekV3PretrainedModel
from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_PretrainedModel
from fastdeploy.model_executor.models.ernie4_5_mtp import Ernie4_5_MTPPretrainedModel
from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import (
Ernie4_5_VLPretrainedModel,
)
from fastdeploy.model_executor.models.qwen2 import Qwen2PretrainedModel
from fastdeploy.model_executor.models.qwen3 import Qwen3PretrainedModel
from fastdeploy.model_executor.models.qwen3moe import Qwen3MoePretrainedModel
MODEL_CLASSES = {
"Ernie4_5_MoeForCausalLM": Ernie4_5_PretrainedModel,
"Ernie4_5_MTPForCausalLM": Ernie4_5_MTPPretrainedModel,
"Qwen2ForCausalLM": Qwen2PretrainedModel,
"Qwen3ForCausalLM": Qwen3PretrainedModel,
"Qwen3MoeForCausalLM": Qwen3MoePretrainedModel,
"Ernie4_5_ForCausalLM": Ernie4_5_PretrainedModel,
"DeepseekV3ForCausalLM": DeepSeekV3PretrainedModel,
"Ernie4_5_VLMoeForConditionalGeneration": Ernie4_5_VLPretrainedModel,
}
def get_pretrain_cls(architectures: str) -> PretrainedModel:
"""get_pretrain_cls"""
return MODEL_CLASSES[architectures]