[Other] Improve examples and readme for Ascend deployment (#1052)

* Add Huawei Ascend NPU deploy through PaddleLite CANN

* Add NNAdapter interface for paddlelite

* Modify Huawei Ascend Cmake

* Update way for compiling Huawei Ascend NPU deployment

* remove UseLiteBackend in UseCANN

* Support compile python whlee

* Change names of nnadapter API

* Add nnadapter pybind and remove useless API

* Support Python deployment on Huawei Ascend NPU

* Add models suppor for ascend

* Add PPOCR rec reszie for ascend

* fix conflict for ascend

* Rename CANN to Ascend

* Rename CANN to Ascend

* Improve ascend

* fix ascend bug

* improve ascend docs

* improve ascend docs

* improve ascend docs

* Improve Ascend

* Improve Ascend

* Move ascend python demo

* Imporve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Imporve ascend

* Imporve ascend

* Improve ascend

* acc eval script

* acc eval

* remove acc_eval from branch huawei

* Add detection and segmentation examples for Ascend deployment

* Add detection and segmentation examples for Ascend deployment

* Add PPOCR example for ascend deploy

* Imporve paddle lite compiliation

* Add FlyCV doc

* Add FlyCV doc

* Add FlyCV doc

* Imporve Ascend docs

* Imporve Ascend docs

* Improve PPOCR example
This commit is contained in:
yunyaoXYY
2023-01-04 16:18:38 +08:00
committed by GitHub
parent 07ad7216f6
commit d49160252b
19 changed files with 663 additions and 130 deletions

View File

@@ -41,6 +41,9 @@ tar xvf ppyoloe_crn_l_300e_coco.tgz
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
## PaddleDetection C++接口 ## PaddleDetection C++接口
### 模型类 ### 模型类

View File

@@ -55,6 +55,9 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
## YOLOv5 C++接口 ## YOLOv5 C++接口
### YOLOv5类 ### YOLOv5类

View File

@@ -33,6 +33,10 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
./infer_paddle_demo yolov6s_infer 000000014439.jpg 3 ./infer_paddle_demo yolov6s_infer 000000014439.jpg 3
``` ```
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
如果想要验证ONNX模型的推理可以参考如下命令 如果想要验证ONNX模型的推理可以参考如下命令
```bash ```bash
#下载官方转换好的YOLOv6 ONNX模型文件和测试图片 #下载官方转换好的YOLOv6 ONNX模型文件和测试图片

View File

@@ -31,6 +31,10 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
# 华为昇腾推理 # 华为昇腾推理
./infer_paddle_model_demo yolov7_infer 000000014439.jpg 3 ./infer_paddle_model_demo yolov7_infer 000000014439.jpg 3
``` ```
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
如果想要验证ONNX模型的推理可以参考如下命令 如果想要验证ONNX模型的推理可以参考如下命令
```bash ```bash
#下载官方转换好的yolov7 ONNX模型文件和测试图片 #下载官方转换好的yolov7 ONNX模型文件和测试图片

View File

@@ -12,3 +12,7 @@ include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc) add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖 # 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS}) target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
add_executable(infer_static_shape_demo ${PROJECT_SOURCE_DIR}/infer_static_shape.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_static_shape_demo ${FASTDEPLOY_LIBS})

View File

@@ -43,13 +43,16 @@ wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_
./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 3 ./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 3
# 昆仑芯XPU推理 # 昆仑芯XPU推理
./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 4 ./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 4
# 华为昇腾推理 # 华为昇腾推理, 需要使用静态shape的demo, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 5 ./infer_static_shape_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 1
``` ```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
运行完成可视化结果如下图所示 运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg"> <img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg">

View File

@@ -55,10 +55,6 @@ void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option); auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option); auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
// Users could enable static shape infer for rec model when deploy PP-OCR on hardware
// which can not support dynamic shape infer well, like Huawei Ascend series.
// rec_model.GetPreprocessor().SetStaticShapeInfer(true);
assert(det_model.Initialized()); assert(det_model.Initialized());
assert(cls_model.Initialized()); assert(cls_model.Initialized());
assert(rec_model.Initialized()); assert(rec_model.Initialized());
@@ -70,9 +66,6 @@ void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model
// Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity. // Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
// When inference batch size is set to -1, it means that the inference batch size // When inference batch size is set to -1, it means that the inference batch size
// of the cls and rec models will be the same as the number of boxes detected by the det model. // of the cls and rec models will be the same as the number of boxes detected by the det model.
// When users enable static shape infer for rec model, the batch size of cls and rec model needs to be set to 1.
// ppocr_v2.SetClsBatchSize(1);
// ppocr_v2.SetRecBatchSize(1);
ppocr_v2.SetClsBatchSize(cls_batch_size); ppocr_v2.SetClsBatchSize(cls_batch_size);
ppocr_v2.SetRecBatchSize(rec_batch_size); ppocr_v2.SetRecBatchSize(rec_batch_size);
@@ -129,8 +122,6 @@ int main(int argc, char* argv[]) {
option.EnablePaddleToTrt(); option.EnablePaddleToTrt();
} else if (flag == 4) { } else if (flag == 4) {
option.UseKunlunXin(); option.UseKunlunXin();
} else if (flag == 5) {
option.UseAscend();
} }
std::string det_model_dir = argv[1]; std::string det_model_dir = argv[1];

View File

@@ -0,0 +1,107 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file, const fastdeploy::RuntimeOption& option) {
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
auto det_option = option;
auto cls_option = option;
auto rec_option = option;
auto det_model = fastdeploy::vision::ocr::DBDetector(det_model_file, det_params_file, det_option);
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
// Users could enable static shape infer for rec model when deploy PP-OCR on hardware
// which can not support dynamic shape infer well, like Huawei Ascend series.
rec_model.GetPreprocessor().SetStaticShapeInfer(true);
assert(det_model.Initialized());
assert(cls_model.Initialized());
assert(rec_model.Initialized());
// The classification model is optional, so the PP-OCR can also be connected in series as follows
// auto ppocr_v2 = fastdeploy::pipeline::PPOCRv2(&det_model, &rec_model);
auto ppocr_v2 = fastdeploy::pipeline::PPOCRv2(&det_model, &cls_model, &rec_model);
// When users enable static shape infer for rec model, the batch size of cls and rec model must to be set to 1.
ppocr_v2.SetClsBatchSize(1);
ppocr_v2.SetRecBatchSize(1);
if(!ppocr_v2.Initialized()){
std::cerr << "Failed to initialize PP-OCR." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::OCRResult result;
if (!ppocr_v2.Predict(im, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << result.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisOcr(im, result);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 7) {
std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
"path/to/rec_model path/to/rec_label_file path/to/image "
"run_option, "
"e.g ./infer_demo ./ch_PP-OCRv2_det_infer "
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer "
"./ppocr_keys_v1.txt ./12.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with ascend."
<< std::endl;
return -1;
}
fastdeploy::RuntimeOption option;
int flag = std::atoi(argv[6]);
if (flag == 0) {
option.UseCpu();
} else if (flag == 1) {
option.UseAscend();
}
std::string det_model_dir = argv[1];
std::string cls_model_dir = argv[2];
std::string rec_model_dir = argv[3];
std::string rec_label_file = argv[4];
std::string test_image = argv[5];
InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, test_image, option);
return 0;
}

View File

@@ -36,8 +36,8 @@ python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2
python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt
# 昆仑芯XPU推理 # 昆仑芯XPU推理
python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device kunlunxin python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device kunlunxin
# 华为昇腾推理 # 华为昇腾推理,需要使用静态shape脚本, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
python infer.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend python infer_static_shape.py --det_model ch_PP-OCRv2_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv2_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend
``` ```
运行完成可视化结果如下图所示 运行完成可视化结果如下图所示

View File

@@ -58,43 +58,113 @@ def parse_arguments():
type=int, type=int,
default=9, default=9,
help="Number of threads while inference on CPU.") help="Number of threads while inference on CPU.")
parser.add_argument(
"--cls_bs",
type=int,
default=1,
help="Classification model inference batch size.")
parser.add_argument(
"--rec_bs",
type=int,
default=6,
help="Recognition model inference batch size")
return parser.parse_args() return parser.parse_args()
def build_option(args): def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu(0)
option.set_cpu_thread_num(args.cpu_thread_num) det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
det_option.set_cpu_thread_num(args.cpu_thread_num)
cls_option.set_cpu_thread_num(args.cpu_thread_num)
rec_option.set_cpu_thread_num(args.cpu_thread_num)
if args.device.lower() == "gpu":
det_option.use_gpu(args.device_id)
cls_option.use_gpu(args.device_id)
rec_option.use_gpu(args.device_id)
if args.device.lower() == "kunlunxin": if args.device.lower() == "kunlunxin":
option.use_kunlunxin() det_option.use_kunlunxin()
return option cls_option.use_kunlunxin()
rec_option.use_kunlunxin()
if args.device.lower() == "ascend": return det_option, cls_option, rec_option
option.use_ascend()
return option
if args.backend.lower() == "trt": if args.backend.lower() == "trt":
assert args.device.lower( assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU." ) == "gpu", "TensorRT backend require inference on device GPU."
option.use_trt_backend() det_option.use_trt_backend()
cls_option.use_trt_backend()
rec_option.use_trt_backend()
# 设置trt input shape
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.cls_bs, 3, 48, 320],
[args.cls_bs, 3, 48, 1024])
rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
[args.rec_bs, 3, 32, 320],
[args.rec_bs, 3, 32, 2304])
# 用户可以把TRT引擎文件保存至本地
det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
elif args.backend.lower() == "pptrt": elif args.backend.lower() == "pptrt":
assert args.device.lower( assert args.device.lower(
) == "gpu", "Paddle-TensorRT backend require inference on device GPU." ) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
option.use_trt_backend() det_option.use_trt_backend()
option.enable_paddle_trt_collect_shape() det_option.enable_paddle_trt_collect_shape()
option.enable_paddle_to_trt() det_option.enable_paddle_to_trt()
cls_option.use_trt_backend()
cls_option.enable_paddle_trt_collect_shape()
cls_option.enable_paddle_to_trt()
rec_option.use_trt_backend()
rec_option.enable_paddle_trt_collect_shape()
rec_option.enable_paddle_to_trt()
# 设置trt input shape
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.cls_bs, 3, 48, 320],
[args.cls_bs, 3, 48, 1024])
rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
[args.rec_bs, 3, 32, 320],
[args.rec_bs, 3, 32, 2304])
# 用户可以把TRT引擎文件保存至本地
det_option.set_trt_cache_file(args.det_model)
cls_option.set_trt_cache_file(args.cls_model)
rec_option.set_trt_cache_file(args.rec_model)
elif args.backend.lower() == "ort": elif args.backend.lower() == "ort":
option.use_ort_backend() det_option.use_ort_backend()
cls_option.use_ort_backend()
rec_option.use_ort_backend()
elif args.backend.lower() == "paddle": elif args.backend.lower() == "paddle":
option.use_paddle_infer_backend() det_option.use_paddle_infer_backend()
cls_option.use_paddle_infer_backend()
rec_option.use_paddle_infer_backend()
elif args.backend.lower() == "openvino": elif args.backend.lower() == "openvino":
assert args.device.lower( assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU." ) == "cpu", "OpenVINO backend require inference on device CPU."
option.use_openvino_backend() det_option.use_openvino_backend()
return option cls_option.use_openvino_backend()
rec_option.use_openvino_backend()
return det_option, cls_option, rec_option
args = parse_arguments() args = parse_arguments()
@@ -111,49 +181,18 @@ rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file rec_label_file = args.rec_label_file
# 对于三个模型,均采用同样的部署配置 # 对于三个模型,均采用同样的部署配置
# 用户也可根据自行需求分别配置 # 用户也可根据自己的需求,个性化配置
runtime_option = build_option(args) det_option, cls_option, rec_option = build_option(args)
# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
# 需要把cls_batch_size和rec_batch_size都设置为1.
cls_batch_size = 1
rec_batch_size = 6
# 当使用TRT时分别给三个模型的runtime设置动态shape,并完成模型的创建.
# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option = runtime_option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
# 用户可以把TRT引擎文件保存至本地
# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
det_model = fd.vision.ocr.DBDetector( det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option) det_model_file, det_params_file, runtime_option=det_option)
cls_option = runtime_option
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[cls_batch_size, 3, 48, 320],
[cls_batch_size, 3, 48, 1024])
# 用户可以把TRT引擎文件保存至本地
# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier( cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option) cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = runtime_option
rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
[rec_batch_size, 3, 32, 320],
[rec_batch_size, 3, 32, 2304])
# 用户可以把TRT引擎文件保存至本地
# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer( rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option) rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
# 需要使用下行代码, 来启用rec模型的静态shape推理.
# rec_model.preprocessor.static_shape_infer = True
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None # 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v2 = fd.vision.ocr.PPOCRv2( ppocr_v2 = fd.vision.ocr.PPOCRv2(
det_model=det_model, cls_model=cls_model, rec_model=rec_model) det_model=det_model, cls_model=cls_model, rec_model=rec_model)
@@ -161,8 +200,8 @@ ppocr_v2 = fd.vision.ocr.PPOCRv2(
# 给cls和rec模型设置推理时的batch size # 给cls和rec模型设置推理时的batch size
# 此值能为-1, 和1到正无穷 # 此值能为-1, 和1到正无穷
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同 # 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
ppocr_v2.cls_batch_size = cls_batch_size ppocr_v2.cls_batch_size = args.cls_bs
ppocr_v2.rec_batch_size = rec_batch_size ppocr_v2.rec_batch_size = args.rec_bs
# 预测图片准备 # 预测图片准备
im = cv2.imread(args.image) im = cv2.imread(args.image)

View File

@@ -0,0 +1,114 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--cls_model",
required=True,
help="Path of Classification model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--cpu_thread_num",
type=int,
default=9,
help="Number of threads while inference on CPU.")
return parser.parse_args()
def build_option(args):
det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
# 当前需要对PP-OCR启用静态shape推理的硬件只有昇腾.
if args.device.lower() == "ascend":
det_option.use_ascend()
cls_option.use_ascend()
rec_option.use_ascend()
return det_option, cls_option, rec_option
args = parse_arguments()
# Detection模型, 检测文字框
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
# Classification模型方向分类可选
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
# Recognition模型文字识别模型
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
det_option, cls_option, rec_option = build_option(args)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# Rec模型启用静态shape推理
rec_model.preprocessor.static_shape_infer = True
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v2 = fd.vision.ocr.PPOCRv2(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
ppocr_v2.cls_batch_size = 1
ppocr_v2.rec_batch_size = 1
# 预测图片准备
im = cv2.imread(args.image)
#预测并打印结果
result = ppocr_v2.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")

View File

@@ -12,3 +12,7 @@ include_directories(${FASTDEPLOY_INCS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc) add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖 # 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS}) target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
add_executable(infer_static_shape_demo ${PROJECT_SOURCE_DIR}/infer_static_shape.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_static_shape_demo ${FASTDEPLOY_LIBS})

View File

@@ -43,13 +43,16 @@ wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_
./infer_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 3 ./infer_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 3
# 昆仑芯XPU推理 # 昆仑芯XPU推理
./infer_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 4 ./infer_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 4
# 华为昇腾推理, 请用户在代码里正确开启Rec模型的静态shape推理并设置分类模型和识别模型的推理batch size为1. # 华为昇腾推理,需要使用静态shape的demo, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
./infer_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 5 ./infer_static_shape_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 1
``` ```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
运行完成可视化结果如下图所示 运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg"> <img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg">

View File

@@ -56,10 +56,6 @@ void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option); auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option); auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
// Users could enable static shape infer for rec model when deploy PP-OCR on hardware
// which can not support dynamic shape infer well, like Huawei Ascend series.
// rec_model.GetPreprocessor().SetStaticShapeInfer(true);
assert(det_model.Initialized()); assert(det_model.Initialized());
assert(cls_model.Initialized()); assert(cls_model.Initialized());
assert(rec_model.Initialized()); assert(rec_model.Initialized());
@@ -71,9 +67,6 @@ void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model
// Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity. // Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
// When inference batch size is set to -1, it means that the inference batch size // When inference batch size is set to -1, it means that the inference batch size
// of the cls and rec models will be the same as the number of boxes detected by the det model. // of the cls and rec models will be the same as the number of boxes detected by the det model.
// When users enable static shape infer for rec model, the batch size of cls and rec model needs to be set to 1.
// ppocr_v3.SetClsBatchSize(1);
// ppocr_v3.SetRecBatchSize(1);
ppocr_v3.SetClsBatchSize(cls_batch_size); ppocr_v3.SetClsBatchSize(cls_batch_size);
ppocr_v3.SetRecBatchSize(rec_batch_size); ppocr_v3.SetRecBatchSize(rec_batch_size);
@@ -130,8 +123,6 @@ int main(int argc, char* argv[]) {
option.EnablePaddleToTrt(); option.EnablePaddleToTrt();
} else if (flag == 4) { } else if (flag == 4) {
option.UseKunlunXin(); option.UseKunlunXin();
} else if (flag == 5) {
option.UseAscend();
} }
std::string det_model_dir = argv[1]; std::string det_model_dir = argv[1];

View File

@@ -0,0 +1,107 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file, const fastdeploy::RuntimeOption& option) {
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
auto det_option = option;
auto cls_option = option;
auto rec_option = option;
auto det_model = fastdeploy::vision::ocr::DBDetector(det_model_file, det_params_file, det_option);
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
// Users could enable static shape infer for rec model when deploy PP-OCR on hardware
// which can not support dynamic shape infer well, like Huawei Ascend series.
rec_model.GetPreprocessor().SetStaticShapeInfer(true);
assert(det_model.Initialized());
assert(cls_model.Initialized());
assert(rec_model.Initialized());
// The classification model is optional, so the PP-OCR can also be connected in series as follows
// auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
// When users enable static shape infer for rec model, the batch size of cls and rec model must to be set to 1.
ppocr_v3.SetClsBatchSize(1);
ppocr_v3.SetRecBatchSize(1);
if(!ppocr_v3.Initialized()){
std::cerr << "Failed to initialize PP-OCR." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::OCRResult result;
if (!ppocr_v3.Predict(im, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << result.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisOcr(im, result);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 7) {
std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
"path/to/rec_model path/to/rec_label_file path/to/image "
"run_option, "
"e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
"./ppocr_keys_v1.txt ./12.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with ascend."
<< std::endl;
return -1;
}
fastdeploy::RuntimeOption option;
int flag = std::atoi(argv[6]);
if (flag == 0) {
option.UseCpu();
} else if (flag == 1) {
option.UseAscend();
}
std::string det_model_dir = argv[1];
std::string cls_model_dir = argv[2];
std::string rec_model_dir = argv[3];
std::string rec_label_file = argv[4];
std::string test_image = argv[5];
InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, test_image, option);
return 0;
}

View File

@@ -35,8 +35,8 @@ python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device gpu --backend trt
# 昆仑芯XPU推理 # 昆仑芯XPU推理
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device kunlunxin python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device kunlunxin
# 华为昇腾推理 # 华为昇腾推理,需要使用静态shape脚本, 若用户需要连续地预测图片, 输入图片尺寸需要准备为统一尺寸
python infer.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend python infer_static_shape.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image 12.jpg --device ascend
``` ```
运行完成可视化结果如下图所示 运行完成可视化结果如下图所示

View File

@@ -58,43 +58,113 @@ def parse_arguments():
type=int, type=int,
default=9, default=9,
help="Number of threads while inference on CPU.") help="Number of threads while inference on CPU.")
parser.add_argument(
"--cls_bs",
type=int,
default=1,
help="Classification model inference batch size.")
parser.add_argument(
"--rec_bs",
type=int,
default=6,
help="Recognition model inference batch size")
return parser.parse_args() return parser.parse_args()
def build_option(args): def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu(0)
option.set_cpu_thread_num(args.cpu_thread_num) det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
det_option.set_cpu_thread_num(args.cpu_thread_num)
cls_option.set_cpu_thread_num(args.cpu_thread_num)
rec_option.set_cpu_thread_num(args.cpu_thread_num)
if args.device.lower() == "gpu":
det_option.use_gpu(args.device_id)
cls_option.use_gpu(args.device_id)
rec_option.use_gpu(args.device_id)
if args.device.lower() == "kunlunxin": if args.device.lower() == "kunlunxin":
option.use_kunlunxin() det_option.use_kunlunxin()
return option cls_option.use_kunlunxin()
rec_option.use_kunlunxin()
if args.device.lower() == "ascend": return det_option, cls_option, rec_option
option.use_ascend()
return option
if args.backend.lower() == "trt": if args.backend.lower() == "trt":
assert args.device.lower( assert args.device.lower(
) == "gpu", "TensorRT backend require inference on device GPU." ) == "gpu", "TensorRT backend require inference on device GPU."
option.use_trt_backend() det_option.use_trt_backend()
cls_option.use_trt_backend()
rec_option.use_trt_backend()
# 设置trt input shape
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.cls_bs, 3, 48, 320],
[args.cls_bs, 3, 48, 1024])
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.rec_bs, 3, 48, 320],
[args.rec_bs, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
elif args.backend.lower() == "pptrt": elif args.backend.lower() == "pptrt":
assert args.device.lower( assert args.device.lower(
) == "gpu", "Paddle-TensorRT backend require inference on device GPU." ) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
option.use_trt_backend() det_option.use_trt_backend()
option.enable_paddle_trt_collect_shape() det_option.enable_paddle_trt_collect_shape()
option.enable_paddle_to_trt() det_option.enable_paddle_to_trt()
cls_option.use_trt_backend()
cls_option.enable_paddle_trt_collect_shape()
cls_option.enable_paddle_to_trt()
rec_option.use_trt_backend()
rec_option.enable_paddle_trt_collect_shape()
rec_option.enable_paddle_to_trt()
# 设置trt input shape
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.cls_bs, 3, 48, 320],
[args.cls_bs, 3, 48, 1024])
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[args.rec_bs, 3, 48, 320],
[args.rec_bs, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
det_option.set_trt_cache_file(args.det_model)
cls_option.set_trt_cache_file(args.cls_model)
rec_option.set_trt_cache_file(args.rec_model)
elif args.backend.lower() == "ort": elif args.backend.lower() == "ort":
option.use_ort_backend() det_option.use_ort_backend()
cls_option.use_ort_backend()
rec_option.use_ort_backend()
elif args.backend.lower() == "paddle": elif args.backend.lower() == "paddle":
option.use_paddle_infer_backend() det_option.use_paddle_infer_backend()
cls_option.use_paddle_infer_backend()
rec_option.use_paddle_infer_backend()
elif args.backend.lower() == "openvino": elif args.backend.lower() == "openvino":
assert args.device.lower( assert args.device.lower(
) == "cpu", "OpenVINO backend require inference on device CPU." ) == "cpu", "OpenVINO backend require inference on device CPU."
option.use_openvino_backend() det_option.use_openvino_backend()
return option cls_option.use_openvino_backend()
rec_option.use_openvino_backend()
return det_option, cls_option, rec_option
args = parse_arguments() args = parse_arguments()
@@ -111,49 +181,18 @@ rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file rec_label_file = args.rec_label_file
# 对于三个模型,均采用同样的部署配置 # 对于三个模型,均采用同样的部署配置
# 用户也可根据自行需求分别配置 # 用户也可根据自己的需求,个性化配置
runtime_option = build_option(args) det_option, cls_option, rec_option = build_option(args)
# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
# 需要把cls_batch_size和rec_batch_size都设置为1.
cls_batch_size = 1
rec_batch_size = 6
# 当使用TRT时分别给三个模型的runtime设置动态shape,并完成模型的创建.
# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
det_option = runtime_option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
[1, 3, 960, 960])
# 用户可以把TRT引擎文件保存至本地
# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
det_model = fd.vision.ocr.DBDetector( det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option) det_model_file, det_params_file, runtime_option=det_option)
cls_option = runtime_option
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
[cls_batch_size, 3, 48, 320],
[cls_batch_size, 3, 48, 1024])
# 用户可以把TRT引擎文件保存至本地
# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier( cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option) cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = runtime_option
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
[rec_batch_size, 3, 48, 320],
[rec_batch_size, 3, 48, 2304])
# 用户可以把TRT引擎文件保存至本地
# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer( rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option) rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
# 需要使用下行代码, 来启用rec模型的静态shape推理.
# rec_model.preprocessor.static_shape_infer = True
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None # 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v3 = fd.vision.ocr.PPOCRv3( ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model) det_model=det_model, cls_model=cls_model, rec_model=rec_model)
@@ -161,8 +200,8 @@ ppocr_v3 = fd.vision.ocr.PPOCRv3(
# 给cls和rec模型设置推理时的batch size # 给cls和rec模型设置推理时的batch size
# 此值能为-1, 和1到正无穷 # 此值能为-1, 和1到正无穷
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同 # 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
ppocr_v3.cls_batch_size = cls_batch_size ppocr_v3.cls_batch_size = args.cls_bs
ppocr_v3.rec_batch_size = rec_batch_size ppocr_v3.rec_batch_size = args.rec_bs
# 预测图片准备 # 预测图片准备
im = cv2.imread(args.image) im = cv2.imread(args.image)

View File

@@ -0,0 +1,114 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--cls_model",
required=True,
help="Path of Classification model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
parser.add_argument(
"--cpu_thread_num",
type=int,
default=9,
help="Number of threads while inference on CPU.")
return parser.parse_args()
def build_option(args):
det_option = fd.RuntimeOption()
cls_option = fd.RuntimeOption()
rec_option = fd.RuntimeOption()
# 当前需要对PP-OCR启用静态shape推理的硬件只有昇腾.
if args.device.lower() == "ascend":
det_option.use_ascend()
cls_option.use_ascend()
rec_option.use_ascend()
return det_option, cls_option, rec_option
args = parse_arguments()
# Detection模型, 检测文字框
det_model_file = os.path.join(args.det_model, "inference.pdmodel")
det_params_file = os.path.join(args.det_model, "inference.pdiparams")
# Classification模型方向分类可选
cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
# Recognition模型文字识别模型
rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
rec_label_file = args.rec_label_file
det_option, cls_option, rec_option = build_option(args)
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_model = fd.vision.ocr.Recognizer(
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
# Rec模型启用静态shape推理
rec_model.preprocessor.static_shape_infer = True
# 创建PP-OCR串联3个模型其中cls_model可选如无需求可设置为None
ppocr_v3 = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
# Cls模型和Rec模型的batch size 必须设置为1, 开启静态shape推理
ppocr_v3.cls_batch_size = 1
ppocr_v3.rec_batch_size = 1
# 预测图片准备
im = cv2.imread(args.image)
#预测并打印结果
result = ppocr_v3.predict(im)
print(result)
# 可视化结果
vis_im = fd.vision.vis_ppocr(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")

View File

@@ -46,6 +46,9 @@ wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
## PaddleSeg C++接口 ## PaddleSeg C++接口
### PaddleSeg类 ### PaddleSeg类