mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Other] Improve examples and readme for Ascend deployment (#1052)
* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend * acc eval script * acc eval * remove acc_eval from branch huawei * Add detection and segmentation examples for Ascend deployment * Add detection and segmentation examples for Ascend deployment * Add PPOCR example for ascend deploy * Imporve paddle lite compiliation * Add FlyCV doc * Add FlyCV doc * Add FlyCV doc * Imporve Ascend docs * Imporve Ascend docs * Improve PPOCR example
This commit is contained in:
@@ -58,43 +58,113 @@ def parse_arguments():
|
||||
type=int,
|
||||
default=9,
|
||||
help="Number of threads while inference on CPU.")
|
||||
parser.add_argument(
|
||||
"--cls_bs",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Classification model inference batch size.")
|
||||
parser.add_argument(
|
||||
"--rec_bs",
|
||||
type=int,
|
||||
default=6,
|
||||
help="Recognition model inference batch size")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu(0)
|
||||
|
||||
option.set_cpu_thread_num(args.cpu_thread_num)
|
||||
det_option = fd.RuntimeOption()
|
||||
cls_option = fd.RuntimeOption()
|
||||
rec_option = fd.RuntimeOption()
|
||||
|
||||
det_option.set_cpu_thread_num(args.cpu_thread_num)
|
||||
cls_option.set_cpu_thread_num(args.cpu_thread_num)
|
||||
rec_option.set_cpu_thread_num(args.cpu_thread_num)
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
det_option.use_gpu(args.device_id)
|
||||
cls_option.use_gpu(args.device_id)
|
||||
rec_option.use_gpu(args.device_id)
|
||||
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
return option
|
||||
det_option.use_kunlunxin()
|
||||
cls_option.use_kunlunxin()
|
||||
rec_option.use_kunlunxin()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
return option
|
||||
return det_option, cls_option, rec_option
|
||||
|
||||
if args.backend.lower() == "trt":
|
||||
assert args.device.lower(
|
||||
) == "gpu", "TensorRT backend require inference on device GPU."
|
||||
option.use_trt_backend()
|
||||
det_option.use_trt_backend()
|
||||
cls_option.use_trt_backend()
|
||||
rec_option.use_trt_backend()
|
||||
|
||||
# 设置trt input shape
|
||||
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
|
||||
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
|
||||
[1, 3, 960, 960])
|
||||
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||||
[args.cls_bs, 3, 48, 320],
|
||||
[args.cls_bs, 3, 48, 1024])
|
||||
rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
|
||||
[args.rec_bs, 3, 32, 320],
|
||||
[args.rec_bs, 3, 32, 2304])
|
||||
|
||||
# 用户可以把TRT引擎文件保存至本地
|
||||
det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
|
||||
cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
|
||||
rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
|
||||
|
||||
elif args.backend.lower() == "pptrt":
|
||||
assert args.device.lower(
|
||||
) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
|
||||
option.use_trt_backend()
|
||||
option.enable_paddle_trt_collect_shape()
|
||||
option.enable_paddle_to_trt()
|
||||
det_option.use_trt_backend()
|
||||
det_option.enable_paddle_trt_collect_shape()
|
||||
det_option.enable_paddle_to_trt()
|
||||
|
||||
cls_option.use_trt_backend()
|
||||
cls_option.enable_paddle_trt_collect_shape()
|
||||
cls_option.enable_paddle_to_trt()
|
||||
|
||||
rec_option.use_trt_backend()
|
||||
rec_option.enable_paddle_trt_collect_shape()
|
||||
rec_option.enable_paddle_to_trt()
|
||||
|
||||
# 设置trt input shape
|
||||
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
|
||||
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
|
||||
[1, 3, 960, 960])
|
||||
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||||
[args.cls_bs, 3, 48, 320],
|
||||
[args.cls_bs, 3, 48, 1024])
|
||||
rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
|
||||
[args.rec_bs, 3, 32, 320],
|
||||
[args.rec_bs, 3, 32, 2304])
|
||||
|
||||
# 用户可以把TRT引擎文件保存至本地
|
||||
det_option.set_trt_cache_file(args.det_model)
|
||||
cls_option.set_trt_cache_file(args.cls_model)
|
||||
rec_option.set_trt_cache_file(args.rec_model)
|
||||
|
||||
elif args.backend.lower() == "ort":
|
||||
option.use_ort_backend()
|
||||
det_option.use_ort_backend()
|
||||
cls_option.use_ort_backend()
|
||||
rec_option.use_ort_backend()
|
||||
|
||||
elif args.backend.lower() == "paddle":
|
||||
option.use_paddle_infer_backend()
|
||||
det_option.use_paddle_infer_backend()
|
||||
cls_option.use_paddle_infer_backend()
|
||||
rec_option.use_paddle_infer_backend()
|
||||
|
||||
elif args.backend.lower() == "openvino":
|
||||
assert args.device.lower(
|
||||
) == "cpu", "OpenVINO backend require inference on device CPU."
|
||||
option.use_openvino_backend()
|
||||
return option
|
||||
det_option.use_openvino_backend()
|
||||
cls_option.use_openvino_backend()
|
||||
rec_option.use_openvino_backend()
|
||||
|
||||
return det_option, cls_option, rec_option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
@@ -111,49 +181,18 @@ rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
|
||||
rec_label_file = args.rec_label_file
|
||||
|
||||
# 对于三个模型,均采用同样的部署配置
|
||||
# 用户也可根据自行需求分别配置
|
||||
runtime_option = build_option(args)
|
||||
# 用户也可根据自己的需求,个性化配置
|
||||
det_option, cls_option, rec_option = build_option(args)
|
||||
|
||||
# PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
|
||||
# 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
|
||||
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
|
||||
# 需要把cls_batch_size和rec_batch_size都设置为1.
|
||||
cls_batch_size = 1
|
||||
rec_batch_size = 6
|
||||
|
||||
# 当使用TRT时,分别给三个模型的runtime设置动态shape,并完成模型的创建.
|
||||
# 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
|
||||
# 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
|
||||
det_option = runtime_option
|
||||
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
|
||||
[1, 3, 960, 960])
|
||||
# 用户可以把TRT引擎文件保存至本地
|
||||
# det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt")
|
||||
det_model = fd.vision.ocr.DBDetector(
|
||||
det_model_file, det_params_file, runtime_option=det_option)
|
||||
|
||||
cls_option = runtime_option
|
||||
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
|
||||
[cls_batch_size, 3, 48, 320],
|
||||
[cls_batch_size, 3, 48, 1024])
|
||||
# 用户可以把TRT引擎文件保存至本地
|
||||
# cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt")
|
||||
cls_model = fd.vision.ocr.Classifier(
|
||||
cls_model_file, cls_params_file, runtime_option=cls_option)
|
||||
|
||||
rec_option = runtime_option
|
||||
rec_option.set_trt_input_shape("x", [1, 3, 32, 10],
|
||||
[rec_batch_size, 3, 32, 320],
|
||||
[rec_batch_size, 3, 32, 2304])
|
||||
# 用户可以把TRT引擎文件保存至本地
|
||||
# rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt")
|
||||
rec_model = fd.vision.ocr.Recognizer(
|
||||
rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)
|
||||
|
||||
# 当用户要把PP-OCR部署在对动态shape推理支持有限的设备上时,(例如华为昇腾)
|
||||
# 需要使用下行代码, 来启用rec模型的静态shape推理.
|
||||
# rec_model.preprocessor.static_shape_infer = True
|
||||
|
||||
# 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
|
||||
ppocr_v2 = fd.vision.ocr.PPOCRv2(
|
||||
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
|
||||
@@ -161,8 +200,8 @@ ppocr_v2 = fd.vision.ocr.PPOCRv2(
|
||||
# 给cls和rec模型设置推理时的batch size
|
||||
# 此值能为-1, 和1到正无穷
|
||||
# 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
|
||||
ppocr_v2.cls_batch_size = cls_batch_size
|
||||
ppocr_v2.rec_batch_size = rec_batch_size
|
||||
ppocr_v2.cls_batch_size = args.cls_bs
|
||||
ppocr_v2.rec_batch_size = args.rec_bs
|
||||
|
||||
# 预测图片准备
|
||||
im = cv2.imread(args.image)
|
||||
|
Reference in New Issue
Block a user