mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-02 20:54:03 +08:00
[Bug Fix] change reused_input_tensors&&reused_output_tensors name (#534)
* add paddle_trt in benchmark * update benchmark in device * update benchmark * update result doc * fixed for CI * update python api_docs * update index.rst * add runtime cpp examples * deal with comments * Update infer_paddle_tensorrt.py * Add runtime quick start * deal with comments * fixed reused_input_tensors&&reused_output_tensors Co-authored-by: Jason <928090362@qq.com>
This commit is contained in:
14
examples/runtime/README.md
Normal file → Executable file
14
examples/runtime/README.md
Normal file → Executable file
@@ -1,5 +1,9 @@
|
||||
# FastDeploy Runtime examples
|
||||
|
||||
FastDeploy Runtime C++ 推理示例如下
|
||||
|
||||
## Python 示例
|
||||
|
||||
| Example Code | Program Language | Description |
|
||||
| :------- | :------- | :---- |
|
||||
| python/infer_paddle_paddle_inference.py | Python | Deploy Paddle model with Paddle Inference(CPU/GPU) |
|
||||
@@ -8,9 +12,19 @@
|
||||
| python/infer_paddle_onnxruntime.py | Python | Deploy Paddle model with ONNX Runtime(CPU/GPU) |
|
||||
| python/infer_onnx_openvino.py | Python | Deploy ONNX model with OpenVINO(CPU) |
|
||||
| python/infer_onnx_tensorrt.py | Python | Deploy ONNX model with TensorRT(GPU) |
|
||||
|
||||
## C++ 示例
|
||||
|
||||
| Example Code | Program Language | Description |
|
||||
| :------- | :------- | :---- |
|
||||
| cpp/infer_paddle_paddle_inference.cc | C++ | Deploy Paddle model with Paddle Inference(CPU/GPU) |
|
||||
| cpp/infer_paddle_tensorrt.cc | C++ | Deploy Paddle model with TensorRT(GPU) |
|
||||
| cpp/infer_paddle_openvino.cc | C++ | Deploy Paddle model with OpenVINO(CPU |
|
||||
| cpp/infer_paddle_onnxruntime.cc | C++ | Deploy Paddle model with ONNX Runtime(CPU/GPU) |
|
||||
| cpp/infer_onnx_openvino.cc | C++ | Deploy ONNX model with OpenVINO(CPU) |
|
||||
| cpp/infer_onnx_tensorrt.cc | C++ | Deploy ONNX model with TensorRT(GPU) |
|
||||
|
||||
## 详细部署文档
|
||||
|
||||
- [Python部署](python)
|
||||
- [C++部署](cpp)
|
||||
|
||||
121
examples/runtime/cpp/README.md
Normal file
121
examples/runtime/cpp/README.md
Normal file
@@ -0,0 +1,121 @@
|
||||
# C++推理
|
||||
|
||||
在运行demo前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本文档以 PaddleClas 分类模型 MobileNetV2 为例展示CPU上的推理示例
|
||||
|
||||
## 1. 获取模型
|
||||
|
||||
```bash
|
||||
wget https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz
|
||||
tar xvf mobilenetv2.tgz
|
||||
```
|
||||
|
||||
## 2. 配置后端
|
||||
|
||||
如下C++代码保存为`infer_paddle_onnxruntime.cc`
|
||||
|
||||
``` c++
|
||||
#include "fastdeploy/runtime.h"
|
||||
|
||||
namespace fd = fastdeploy;
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
std::string model_file = "mobilenetv2/inference.pdmodel";
|
||||
std::string params_file = "mobilenetv2/inference.pdiparams";
|
||||
|
||||
// setup option
|
||||
fd::RuntimeOption runtime_option;
|
||||
runtime_option.SetModelPath(model_file, params_file, fd::ModelFormat::PADDLE);
|
||||
runtime_option.UseOrtBackend();
|
||||
runtime_option.SetCpuThreadNum(12);
|
||||
// init runtime
|
||||
std::unique_ptr<fd::Runtime> runtime =
|
||||
std::unique_ptr<fd::Runtime>(new fd::Runtime());
|
||||
if (!runtime->Init(runtime_option)) {
|
||||
std::cerr << "--- Init FastDeploy Runitme Failed! "
|
||||
<< "\n--- Model: " << model_file << std::endl;
|
||||
return -1;
|
||||
} else {
|
||||
std::cout << "--- Init FastDeploy Runitme Done! "
|
||||
<< "\n--- Model: " << model_file << std::endl;
|
||||
}
|
||||
// init input tensor shape
|
||||
fd::TensorInfo info = runtime->GetInputInfo(0);
|
||||
info.shape = {1, 3, 224, 224};
|
||||
|
||||
std::vector<fd::FDTensor> input_tensors(1);
|
||||
std::vector<fd::FDTensor> output_tensors(1);
|
||||
|
||||
std::vector<float> inputs_data;
|
||||
inputs_data.resize(1 * 3 * 224 * 224);
|
||||
for (size_t i = 0; i < inputs_data.size(); ++i) {
|
||||
inputs_data[i] = std::rand() % 1000 / 1000.0f;
|
||||
}
|
||||
input_tensors[0].SetExternalData({1, 3, 224, 224}, fd::FDDataType::FP32, inputs_data.data());
|
||||
|
||||
//get input name
|
||||
input_tensors[0].name = info.name;
|
||||
|
||||
runtime->Infer(input_tensors, &output_tensors);
|
||||
|
||||
output_tensors[0].PrintInfo();
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
|
||||
```
|
||||
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
|
||||
```
|
||||
|
||||
## 3. 准备CMakeLists.txt
|
||||
|
||||
FastDeploy中包含多个依赖库,直接采用`g++`或编译器编译较为繁杂,推荐使用cmake进行编译配置。示例配置如下,
|
||||
|
||||
```cmake
|
||||
PROJECT(runtime_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(runtime_demo ${PROJECT_SOURCE_DIR}/infer_onnx_openvino.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(runtime_demo ${FASTDEPLOY_LIBS})
|
||||
```
|
||||
|
||||
## 4. 编译可执行程序
|
||||
|
||||
打开命令行终端,进入`infer_paddle_onnxruntime.cc`和`CMakeLists.txt`所在的目录,执行如下命令
|
||||
|
||||
```bash
|
||||
mkdir build & cd build
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=$fastdeploy_cpp_sdk
|
||||
make -j
|
||||
```
|
||||
|
||||
```fastdeploy_cpp_sdk``` 为FastDeploy C++部署库路径
|
||||
|
||||
编译完成后,使用如下命令执行可得到预测结果
|
||||
```bash
|
||||
./runtime_demo
|
||||
```
|
||||
执行时如提示`error while loading shared libraries: libxxx.so: cannot open shared object file: No such file...`,说明程序执行时没有找到FastDeploy的库路径,可通过执行如下命令,将FastDeploy的库路径添加到环境变量之后,重新执行二进制程序。
|
||||
```bash
|
||||
source /Path/to/fastdeploy_cpp_sdk/fastdeploy_init.sh
|
||||
```
|
||||
|
||||
本示例代码在各平台(Windows/Linux/Mac)上通用,但编译过程仅支持(Linux/Mac),Windows上使用msbuild进行编译,具体使用方式参考[Windows平台使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [Runtime Python 示例](../python)
|
||||
- [切换模型推理的硬件和后端](../../../../../docs/cn/faq/how_to_change_backend.md)
|
||||
53
examples/runtime/python/README.md
Normal file
53
examples/runtime/python/README.md
Normal file
@@ -0,0 +1,53 @@
|
||||
# Python推理
|
||||
|
||||
在运行demo前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本文档以 PaddleClas 分类模型 MobileNetV2 为例展示 CPU 上的推理示例
|
||||
|
||||
## 1. 获取模型
|
||||
|
||||
``` python
|
||||
import fastdeploy as fd
|
||||
|
||||
model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
|
||||
fd.download_and_decompress(model_url, path=".")
|
||||
```
|
||||
|
||||
## 2. 配置后端
|
||||
|
||||
``` python
|
||||
option = fd.RuntimeOption()
|
||||
|
||||
option.set_model_path("mobilenetv2/inference.pdmodel",
|
||||
"mobilenetv2/inference.pdiparams")
|
||||
|
||||
# **** CPU 配置 ****
|
||||
option.use_cpu()
|
||||
option.use_ort_backend()
|
||||
option.set_cpu_thread_num(12)
|
||||
|
||||
# 初始化构造runtime
|
||||
runtime = fd.Runtime(option)
|
||||
|
||||
# 获取模型输入名
|
||||
input_name = runtime.get_input_info(0).name
|
||||
|
||||
# 构造随机数据进行推理
|
||||
results = runtime.infer({
|
||||
input_name: np.random.rand(1, 3, 224, 224).astype("float32")
|
||||
})
|
||||
|
||||
print(results[0].shape)
|
||||
```
|
||||
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
|
||||
```
|
||||
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.
|
||||
```
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [Runtime C++ 示例](../cpp)
|
||||
- [切换模型推理的硬件和后端](../../../../../docs/cn/faq/how_to_change_backend.md)
|
||||
@@ -17,8 +17,6 @@
|
||||
| [YOLOv5x-cls](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5x-cls.onnx) | 184MB | 79.0% | 94.4% |
|
||||
|
||||
|
||||
|
||||
|
||||
## 详细部署文档
|
||||
|
||||
- [Python部署](python)
|
||||
|
||||
2
fastdeploy/fastdeploy_model.cc
Normal file → Executable file
2
fastdeploy/fastdeploy_model.cc
Normal file → Executable file
@@ -239,7 +239,7 @@ bool FastDeployModel::Infer(std::vector<FDTensor>& input_tensors,
|
||||
}
|
||||
|
||||
bool FastDeployModel::Infer() {
|
||||
return Infer(reused_input_tensors, &reused_output_tensors);
|
||||
return Infer(reused_input_tensors_, &reused_output_tensors_);
|
||||
}
|
||||
|
||||
std::map<std::string, float> FastDeployModel::PrintStatisInfoOfRuntime() {
|
||||
|
||||
19
fastdeploy/fastdeploy_model.h
Normal file → Executable file
19
fastdeploy/fastdeploy_model.h
Normal file → Executable file
@@ -28,7 +28,7 @@ class FASTDEPLOY_DECL FastDeployModel {
|
||||
virtual bool Infer(std::vector<FDTensor>& input_tensors,
|
||||
std::vector<FDTensor>* output_tensors);
|
||||
|
||||
/** \brief Inference the model by the runtime. This interface is using class member reused_input_tensors to do inference and writing results to reused_output_tensors
|
||||
/** \brief Inference the model by the runtime. This interface is using class member reused_input_tensors_ to do inference and writing results to reused_output_tensors_
|
||||
*/
|
||||
virtual bool Infer();
|
||||
|
||||
@@ -107,17 +107,10 @@ class FASTDEPLOY_DECL FastDeployModel {
|
||||
/** \brief Release reused input/output buffers
|
||||
*/
|
||||
virtual void ReleaseReusedBuffer() {
|
||||
std::vector<FDTensor>().swap(reused_input_tensors);
|
||||
std::vector<FDTensor>().swap(reused_output_tensors);
|
||||
std::vector<FDTensor>().swap(reused_input_tensors_);
|
||||
std::vector<FDTensor>().swap(reused_output_tensors_);
|
||||
}
|
||||
|
||||
/** \brief Reused input tensors
|
||||
*/
|
||||
std::vector<FDTensor> reused_input_tensors;
|
||||
/** \brief Reused output tensors
|
||||
*/
|
||||
std::vector<FDTensor> reused_output_tensors;
|
||||
|
||||
protected:
|
||||
virtual bool InitRuntime();
|
||||
virtual bool CreateCpuBackend();
|
||||
@@ -126,7 +119,11 @@ class FASTDEPLOY_DECL FastDeployModel {
|
||||
virtual bool CreateRKNPUBackend();
|
||||
|
||||
bool initialized = false;
|
||||
std::vector<Backend> valid_external_backends;
|
||||
std::vector<Backend> valid_external_backends_;
|
||||
// Reused input tensors
|
||||
std::vector<FDTensor> reused_input_tensors_;
|
||||
// Reused output tensors
|
||||
std::vector<FDTensor> reused_output_tensors_;
|
||||
|
||||
private:
|
||||
std::shared_ptr<Runtime> runtime_;
|
||||
|
||||
8
fastdeploy/vision/classification/ppcls/model.cc
Normal file → Executable file
8
fastdeploy/vision/classification/ppcls/model.cc
Normal file → Executable file
@@ -60,18 +60,18 @@ bool PaddleClasModel::Predict(const cv::Mat& im, ClassifyResult* result) {
|
||||
|
||||
bool PaddleClasModel::BatchPredict(const std::vector<cv::Mat>& images, std::vector<ClassifyResult>* results) {
|
||||
std::vector<FDMat> fd_images = WrapMat(images);
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors)) {
|
||||
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
|
||||
FDERROR << "Failed to preprocess the input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer(reused_input_tensors, &reused_output_tensors)) {
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
||||
FDERROR << "Failed to inference by runtime." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!postprocessor_.Run(reused_output_tensors, results)) {
|
||||
if (!postprocessor_.Run(reused_output_tensors_, results)) {
|
||||
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
8
fastdeploy/vision/detection/contrib/scaledyolov4.cc
Normal file → Executable file
8
fastdeploy/vision/detection/contrib/scaledyolov4.cc
Normal file → Executable file
@@ -84,7 +84,7 @@ bool ScaledYOLOv4::Initialize() {
|
||||
is_scale_up = false;
|
||||
stride = 32;
|
||||
max_wh = 7680.0;
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -230,17 +230,17 @@ bool ScaledYOLOv4::Predict(cv::Mat* im, DetectionResult* result,
|
||||
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold,
|
||||
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
|
||||
nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
|
||||
8
fastdeploy/vision/detection/contrib/yolor.cc
Normal file → Executable file
8
fastdeploy/vision/detection/contrib/yolor.cc
Normal file → Executable file
@@ -83,7 +83,7 @@ bool YOLOR::Initialize() {
|
||||
is_scale_up = false;
|
||||
stride = 32;
|
||||
max_wh = 7680.0;
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -227,18 +227,18 @@ bool YOLOR::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
||||
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold,
|
||||
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
|
||||
nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
|
||||
10
fastdeploy/vision/detection/contrib/yolov5.cc
Normal file → Executable file
10
fastdeploy/vision/detection/contrib/yolov5.cc
Normal file → Executable file
@@ -93,7 +93,7 @@ bool YOLOv5::Initialize() {
|
||||
stride_ = 32;
|
||||
max_wh_ = 7680.0;
|
||||
multi_label_ = true;
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -350,14 +350,14 @@ bool YOLOv5::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
||||
std::map<std::string, std::array<float, 2>> im_info;
|
||||
|
||||
if (use_cuda_preprocessing_) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors[0], &im_info, size_,
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info, size_,
|
||||
padding_value_, is_mini_pad_, is_no_pad_, is_scale_up_,
|
||||
stride_, max_wh_, multi_label_)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info, size_,
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info, size_,
|
||||
padding_value_, is_mini_pad_, is_no_pad_, is_scale_up_,
|
||||
stride_, max_wh_, multi_label_)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
@@ -365,13 +365,13 @@ bool YOLOv5::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
||||
}
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(reused_output_tensors, result, im_info, conf_threshold,
|
||||
if (!Postprocess(reused_output_tensors_, result, im_info, conf_threshold,
|
||||
nms_iou_threshold, multi_label_)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
|
||||
12
fastdeploy/vision/detection/contrib/yolov5lite.cc
Normal file → Executable file
12
fastdeploy/vision/detection/contrib/yolov5lite.cc
Normal file → Executable file
@@ -123,7 +123,7 @@ bool YOLOv5Lite::Initialize() {
|
||||
anchor_config = {{10.0, 13.0, 16.0, 30.0, 33.0, 23.0},
|
||||
{30.0, 61.0, 62.0, 45.0, 59.0, 119.0},
|
||||
{116.0, 90.0, 156.0, 198.0, 373.0, 326.0}};
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -426,31 +426,31 @@ bool YOLOv5Lite::Predict(cv::Mat* im, DetectionResult* result,
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (use_cuda_preprocessing_) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (is_decode_exported) {
|
||||
if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold,
|
||||
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
|
||||
nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (!PostprocessWithDecode(reused_output_tensors[0], result, im_info,
|
||||
if (!PostprocessWithDecode(reused_output_tensors_[0], result, im_info,
|
||||
conf_threshold, nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
|
||||
10
fastdeploy/vision/detection/contrib/yolov6.cc
Normal file → Executable file
10
fastdeploy/vision/detection/contrib/yolov6.cc
Normal file → Executable file
@@ -96,7 +96,7 @@ bool YOLOv6::Initialize() {
|
||||
is_scale_up = false;
|
||||
stride = 32;
|
||||
max_wh = 4096.0f;
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -311,24 +311,24 @@ bool YOLOv6::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (use_cuda_preprocessing_) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold,
|
||||
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
|
||||
nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
|
||||
10
fastdeploy/vision/detection/contrib/yolov7.cc
Normal file → Executable file
10
fastdeploy/vision/detection/contrib/yolov7.cc
Normal file → Executable file
@@ -94,7 +94,7 @@ bool YOLOv7::Initialize() {
|
||||
is_scale_up = false;
|
||||
stride = 32;
|
||||
max_wh = 7680.0;
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -313,24 +313,24 @@ bool YOLOv7::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (use_cuda_preprocessing_) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold,
|
||||
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
|
||||
nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
|
||||
8
fastdeploy/vision/detection/contrib/yolov7end2end_ort.cc
Normal file → Executable file
8
fastdeploy/vision/detection/contrib/yolov7end2end_ort.cc
Normal file → Executable file
@@ -86,7 +86,7 @@ bool YOLOv7End2EndORT::Initialize() {
|
||||
is_no_pad = false;
|
||||
is_scale_up = false;
|
||||
stride = 32;
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -224,18 +224,18 @@ bool YOLOv7End2EndORT::Predict(cv::Mat* im, DetectionResult* result,
|
||||
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold)) {
|
||||
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
10
fastdeploy/vision/detection/contrib/yolov7end2end_trt.cc
Normal file → Executable file
10
fastdeploy/vision/detection/contrib/yolov7end2end_trt.cc
Normal file → Executable file
@@ -106,7 +106,7 @@ bool YOLOv7End2EndTRT::Initialize() {
|
||||
is_no_pad = false;
|
||||
is_scale_up = false;
|
||||
stride = 32;
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -320,24 +320,24 @@ bool YOLOv7End2EndTRT::Predict(cv::Mat* im, DetectionResult* result,
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (use_cuda_preprocessing_) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(reused_output_tensors, result, im_info, conf_threshold)) {
|
||||
if (!Postprocess(reused_output_tensors_, result, im_info, conf_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
10
fastdeploy/vision/detection/contrib/yolox.cc
Normal file → Executable file
10
fastdeploy/vision/detection/contrib/yolox.cc
Normal file → Executable file
@@ -96,7 +96,7 @@ bool YOLOX::Initialize() {
|
||||
downsample_strides = {8, 16, 32};
|
||||
max_wh = 4096.0f;
|
||||
is_decode_exported = false;
|
||||
reused_input_tensors.resize(1);
|
||||
reused_input_tensors_.resize(1);
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
@@ -290,25 +290,25 @@ bool YOLOX::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
||||
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (!Preprocess(&mat, &reused_input_tensors[0], &im_info)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
reused_input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
||||
if (!Infer()) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (is_decode_exported) {
|
||||
if (!Postprocess(reused_output_tensors[0], result, im_info, conf_threshold,
|
||||
if (!Postprocess(reused_output_tensors_[0], result, im_info, conf_threshold,
|
||||
nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (!PostprocessWithDecode(reused_output_tensors[0], result, im_info,
|
||||
if (!PostprocessWithDecode(reused_output_tensors_[0], result, im_info,
|
||||
conf_threshold, nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
|
||||
6
fastdeploy/vision/detection/ppdet/ppyoloe.cc
Normal file → Executable file
6
fastdeploy/vision/detection/ppdet/ppyoloe.cc
Normal file → Executable file
@@ -55,7 +55,7 @@ bool PPYOLOE::Initialize() {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
return false;
|
||||
}
|
||||
reused_input_tensors.resize(2);
|
||||
reused_input_tensors_.resize(2);
|
||||
|
||||
return true;
|
||||
}
|
||||
@@ -252,7 +252,7 @@ bool PPYOLOE::Postprocess(std::vector<FDTensor>& infer_result,
|
||||
bool PPYOLOE::Predict(cv::Mat* im, DetectionResult* result) {
|
||||
Mat mat(*im);
|
||||
|
||||
if (!Preprocess(&mat, &reused_input_tensors)) {
|
||||
if (!Preprocess(&mat, &reused_input_tensors_)) {
|
||||
FDERROR << "Failed to preprocess input data while using model:"
|
||||
<< ModelName() << "." << std::endl;
|
||||
return false;
|
||||
@@ -264,7 +264,7 @@ bool PPYOLOE::Predict(cv::Mat* im, DetectionResult* result) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!Postprocess(reused_output_tensors, result)) {
|
||||
if (!Postprocess(reused_output_tensors_, result)) {
|
||||
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
|
||||
<< std::endl;
|
||||
return false;
|
||||
|
||||
Reference in New Issue
Block a user