[LLM] support send batch data and aggregate data (#2860)

* [LLM] support send batch data and aggregate data

* [LLM] fix ci bugs

* [LLM] fix ci bugs

* [LLM] fix ci bugs

* [LLM] fix ci bugs

* [LLM] update
This commit is contained in:
ltd0924
2025-07-16 23:42:20 +08:00
committed by GitHub
parent 63d6e7ce06
commit d245d1ca6c
11 changed files with 267 additions and 208 deletions

View File

@@ -263,10 +263,11 @@ class LLMEngine(object):
try:
results = self.scheduler.get_results()
if len(results) == 0:
time.sleep(0.001)
time.sleep(0.005)
continue
for request_id, contents in results.items():
for result in contents:
self.zmq_server.send_multipart(request_id, result)
self.zmq_server.send_multipart(request_id, contents)
except Exception as e:
llm_logger.error("Unexcepted error happend: {}, {}".format(
e, str(traceback.format_exc())))

View File

@@ -20,7 +20,7 @@ import time
from dataclasses import asdict, dataclass, fields
from typing import Any, Dict, Optional, Union
import numpy
import numpy as np
from fastdeploy.engine.sampling_params import SamplingParams
from fastdeploy.utils import data_processor_logger
@@ -181,7 +181,7 @@ class Request:
f"sampling_params={self.sampling_params})")
@dataclass
@dataclass(slots=True)
class CompletionOutput:
"""The output data of one completion output of a request.
@@ -235,7 +235,7 @@ class CompletionOutput:
f"reasoning_content={self.reasoning_content!r}")
@dataclass
@dataclass(slots=True)
class RequestMetrics:
"""Metrics associated with a request.
@@ -310,6 +310,10 @@ class RequestOutput:
None if decoder-only.
num_cached_tokens: The number of tokens with prefix cache hit.
"""
__slots__ = (
'request_id', 'prompt', 'prompt_token_ids', 'outputs',
'finished', 'metrics', 'num_cached_tokens', 'error_code', 'error_msg'
)
def __init__(
self,
@@ -333,6 +337,12 @@ class RequestOutput:
self.error_code = error_code
self.error_msg = error_msg
if prompt_token_ids is None:
self.prompt_token_ids = []
elif isinstance(self.prompt_token_ids, np.ndarray):
self.prompt_token_ids = self.prompt_token_ids.tolist()
def add(self, next_output: "RequestOutput") -> None:
"""Merge RequestOutput into this one"""
@@ -365,11 +375,6 @@ class RequestOutput:
def to_dict(self):
"""convert RequestOutput into a serializable dict """
if self.prompt_token_ids is None:
self.prompt_token_ids = []
if type(self.prompt_token_ids) is numpy.ndarray:
self.prompt_token_ids = self.prompt_token_ids.tolist()
return {
"request_id": self.request_id,

View File

@@ -169,6 +169,8 @@ class LLM:
# get output
outputs = self._run_engine(req_ids, use_tqdm=use_tqdm)
for i in range(len(outputs)):
outputs[i].prompt = prompts[i]
return outputs
def chat(

View File

@@ -21,6 +21,7 @@ import traceback
import uuid
from typing import List, Optional
import msgpack
import aiozmq
from aiozmq import zmq
@@ -143,6 +144,8 @@ class OpenAIServingChat:
dealer.write([b"", request_id.encode('utf-8')])
choices = []
current_waiting_time = 0
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
while num_choices > 0:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
@@ -158,102 +161,106 @@ class OpenAIServingChat:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
await asyncio.sleep(0.01)
continue
response = msgpack.unpackb(raw_data[-1])
for res in response:
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
res = json.loads(raw_data[-1].decode('utf-8'))
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
self.engine_client.data_processor.process_response_dict(
res, stream=True, enable_thinking=enable_thinking)
self.engine_client.data_processor.process_response_dict(
res, stream=True, enable_thinking=enable_thinking)
if res['metrics']['first_token_time'] is not None:
arrival_time = res['metrics']['first_token_time']
inference_start_time = res['metrics']['inference_start_time']
else:
arrival_time = res['metrics']['arrival_time'] - inference_start_time
if first_iteration:
num_prompt_tokens = len(prompt_token_ids)
num_cached_tokens = res.get("num_cached_tokens", 0)
for i in range(num_choices):
choice = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role="assistant", content="", reasoning_content="", tool_calls=None)
)
if request.metadata is not None and request.metadata.get("training", False):
choice.delta.token_ids = prompt_token_ids
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice],
model=model_name
)
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens)
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
first_iteration = False
output = res["outputs"]
delta_text = output["text"]
raw_top_logprobs = output["top_logprobs"]
logprobs_res = None
if raw_top_logprobs is not None:
top_logprobs = LogprobsLists(
logprob_token_ids=raw_top_logprobs[0],
logprobs=raw_top_logprobs[1],
sampled_token_ranks=raw_top_logprobs[2],
)
logprobs_res = self.build_logprobs_response(
request_logprobs=request.logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request.top_logprobs,
)
previous_num_tokens += len(output["token_ids"])
delta_message = DeltaMessage(content=delta_text, reasoning_content=output.get("reasoning_content"), \
token_ids=output.get("token_ids"), tool_calls=output.get("tool_call_content", []))
choice = ChatCompletionResponseStreamChoice(
index=0,
delta=delta_message,
logprobs=logprobs_res,
arrival_time=arrival_time
)
if res["finished"]:
num_choices -= 1
work_process_metrics.e2e_request_latency.observe(time.time() - res["metrics"]["request_start_time"])
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
max_tokens = request.max_completion_tokens or request.max_tokens
if has_no_token_limit or previous_num_tokens != max_tokens:
choice.finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
choice.finish_reason = "tool_calls"
if res['metrics']['first_token_time'] is not None:
arrival_time = res['metrics']['first_token_time']
inference_start_time = res['metrics']['inference_start_time']
else:
choice.finish_reason = "length"
arrival_time = res['metrics']['arrival_time'] - inference_start_time
if first_iteration:
num_prompt_tokens = len(prompt_token_ids)
num_cached_tokens = res.get("num_cached_tokens", 0)
for i in range(num_choices):
choice = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role="assistant", content="", reasoning_content="", tool_calls=None)
)
if request.metadata is not None and request.metadata.get("training", False):
choice.delta.token_ids = prompt_token_ids
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice],
model=model_name
)
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens)
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
first_iteration = False
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
choice.finish_reason = "recover_stop"
output = res["outputs"]
delta_text = output["text"]
raw_top_logprobs = output["top_logprobs"]
logprobs_res = None
if raw_top_logprobs is not None:
top_logprobs = LogprobsLists(
logprob_token_ids=raw_top_logprobs[0],
logprobs=raw_top_logprobs[1],
sampled_token_ranks=raw_top_logprobs[2],
)
logprobs_res = self.build_logprobs_response(
request_logprobs=request.logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request.top_logprobs,
)
if request.metadata is not None and request.metadata.get("training", False) and delta_text != "":
choice.delta.token_ids = output["token_ids"]
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=previous_num_tokens,
total_tokens=num_prompt_tokens + previous_num_tokens
previous_num_tokens += len(output["token_ids"])
delta_message = DeltaMessage(content=delta_text, reasoning_content=output.get("reasoning_content"), \
token_ids=output.get("token_ids"), tool_calls=output.get("tool_call_content", []))
choice = ChatCompletionResponseStreamChoice(
index=0,
delta=delta_message,
logprobs=logprobs_res,
arrival_time=arrival_time
)
choices.append(choice)
if res["finished"]:
num_choices -= 1
work_process_metrics.e2e_request_latency.observe(time.time() - res["metrics"]["request_start_time"])
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
max_tokens = request.max_completion_tokens or request.max_tokens
if has_no_token_limit or previous_num_tokens != max_tokens:
choice.finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
choice.finish_reason = "tool_calls"
else:
choice.finish_reason = "length"
if len(choices) == max_streaming_response_tokens or res["finished"]:
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
choice.finish_reason = "recover_stop"
if request.metadata is not None and request.metadata.get("training", False) and delta_text != "":
choice.delta.token_ids = output["token_ids"]
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=previous_num_tokens,
total_tokens=num_prompt_tokens + previous_num_tokens
)
choices.append(choice)
if len(choices) == max_streaming_response_tokens or res["finished"]:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
choices = []
if choices:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
choices = []
@@ -321,33 +328,38 @@ class OpenAIServingChat:
await asyncio.sleep(0.1)
continue
data = json.loads(raw_data[-1].decode('utf-8'))
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
data = self.engine_client.data_processor.process_response_dict(
data, stream=False, enable_thinking=enable_thinking)
# api_server_logger.debug(f"Client {request_id} received: {data}")
previous_num_tokens += len(data["outputs"]["token_ids"])
# The logprob for handling the response
output = data["outputs"]
raw_top_logprobs = output["top_logprobs"]
if raw_top_logprobs is not None:
top_logprobs = LogprobsLists(
logprob_token_ids=raw_top_logprobs[0],
logprobs=raw_top_logprobs[1],
sampled_token_ranks=raw_top_logprobs[2],
)
logprobs_res = self.build_logprobs_response(
request_logprobs=request.logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request.top_logprobs,
)
if logprobs_res and logprobs_res.content is not None:
logprob_contents.extend(logprobs_res.content)
if data["finished"]:
final_res = data
response = msgpack.unpackb(raw_data[-1])
task_is_finished = False
for data in response:
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
data = self.engine_client.data_processor.process_response_dict(
data, stream=False, enable_thinking=enable_thinking)
# api_server_logger.debug(f"Client {request_id} received: {data}")
previous_num_tokens += len(data["outputs"]["token_ids"])
# The logprob for handling the response
output = data["outputs"]
raw_top_logprobs = output["top_logprobs"]
if raw_top_logprobs is not None:
top_logprobs = LogprobsLists(
logprob_token_ids=raw_top_logprobs[0],
logprobs=raw_top_logprobs[1],
sampled_token_ranks=raw_top_logprobs[2],
)
logprobs_res = self.build_logprobs_response(
request_logprobs=request.logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request.top_logprobs,
)
if logprobs_res and logprobs_res.content is not None:
logprob_contents.extend(logprobs_res.content)
if data["finished"]:
final_res = data
task_is_finished = True
break
if task_is_finished:
break
finally:
dealer.close()

View File

@@ -17,6 +17,7 @@
import asyncio
import aiozmq
import json
import msgpack
from aiozmq import zmq
from asyncio import FIRST_COMPLETED, AbstractEventLoop, Task
import time
@@ -179,18 +180,20 @@ class OpenAIServingCompletion:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
data = json.loads(raw_data[-1].decode("utf-8"))
rid = int(data["request_id"].split("-")[-1])
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
response = msgpack.unpackb(raw_data[-1])
for data in response:
rid = int(data["request_id"].split("-")[-1])
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
self.engine_client.data_processor.process_response_dict(
data, stream=False)
output_tokens[rid] += len(data["outputs"]["token_ids"])
if data.get("finished", False):
data["output_token_ids"] = output_tokens[rid]
valid_results[rid] = data
num_choices -= 1
self.engine_client.data_processor.process_response_dict(
data, stream=False)
output_tokens[rid] += len(data["outputs"]["token_ids"])
if data.get("finished", False):
data["output_token_ids"] = output_tokens[rid]
valid_results[rid] = data
num_choices -= 1
break
return self.request_output_to_completion_response(
final_res_batch=valid_results,
@@ -238,6 +241,12 @@ class OpenAIServingCompletion:
if request.suffix is not None and request.suffix.get("max_streaming_response_tokens", 1) > 1:
max_streaming_response_tokens = request.suffix["max_streaming_response_tokens"]
choices = []
chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices
)
current_waiting_time = 0
while num_choices > 0:
@@ -256,82 +265,86 @@ class OpenAIServingCompletion:
continue
res = json.loads(raw_data[-1].decode('utf-8'))
idx = int(res["request_id"].split("-")[-1])
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
response = msgpack.unpackb(raw_data[-1])
for res in response:
idx = int(res["request_id"].split("-")[-1])
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
if first_iteration[idx]:
if request.suffix is not None and request.suffix.get("training", False):
if first_iteration[idx]:
if request.suffix is not None and request.suffix.get("training", False):
chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[CompletionResponseStreamChoice(
index=idx,
text="",
token_ids=list(prompt_batched_token_ids[idx])
)]
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
first_iteration[idx] = False
self.engine_client.data_processor.process_response_dict(
res, stream=True)
if res['metrics'].get('first_token_time') is not None:
arrival_time = res['metrics']['first_token_time']
inference_start_time[idx] = res['metrics']['inference_start_time']
else:
arrival_time = res['metrics']['arrival_time'] - inference_start_time[idx]
output = res["outputs"]
choices.append(CompletionResponseStreamChoice(
index=idx,
text=output["text"],
token_ids=output.get("token_ids"),
tool_calls=output.get("tool_call_content"),
reasoning_content=output.get("reasoning_content"),
arrival_time=arrival_time
))
if res["finished"]:
if request.max_tokens is None or output_tokens[idx] + 1 != request.max_tokens:
chunk.choices[0].finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
chunk.choices[0].finish_reason = "tool_calls"
else:
chunk.choices[0].finish_reason = "length"
output_tokens[idx] += 1
if len(choices) == max_streaming_response_tokens or res["finished"]:
chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[CompletionResponseStreamChoice(
index=idx,
text="",
token_ids=list(prompt_batched_token_ids[idx])
)]
choices=choices
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
first_iteration[idx] = False
choices = []
self.engine_client.data_processor.process_response_dict(
res, stream=True)
if res['metrics'].get('first_token_time') is not None:
arrival_time = res['metrics']['first_token_time']
inference_start_time[idx] = res['metrics']['inference_start_time']
else:
arrival_time = res['metrics']['arrival_time'] - inference_start_time[idx]
# api_server_logger.info(f"{arrival_time}")
output = res["outputs"]
choices.append(CompletionResponseStreamChoice(
index=idx,
text=output["text"],
token_ids=output.get("token_ids"),
tool_calls=output.get("tool_call_content"),
reasoning_content=output.get("reasoning_content"),
arrival_time=arrival_time
))
if res["finished"]:
if request.max_tokens is None or output_tokens[idx] + 1 != request.max_tokens:
chunk.choices[0].finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
chunk.choices[0].finish_reason = "tool_calls"
else:
chunk.choices[0].finish_reason = "length"
output_tokens[idx] += 1
if len(choices) == max_streaming_response_tokens or res["finished"]:
chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices
)
choices = []
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
if res["finished"]:
num_choices -= 1
if getattr(request, "stream_options", None) and request.stream_options.include_usage:
usage_chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[],
usage=UsageInfo(
prompt_tokens=len(prompt_batched_token_ids[idx]),
completion_tokens=output_tokens[idx]
if res["finished"]:
num_choices -= 1
if getattr(request, "stream_options", None) and request.stream_options.include_usage:
usage_chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[],
usage=UsageInfo(
prompt_tokens=len(prompt_batched_token_ids[idx]),
completion_tokens=output_tokens[idx]
)
)
)
yield f"data: {usage_chunk.model_dump_json(exclude_unset=True)}\n\n"
yield f"data: {usage_chunk.model_dump_json(exclude_unset=True)}\n\n"
if choices:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
choices = []
except Exception as e:

View File

@@ -101,6 +101,10 @@ environment_variables: dict[str, Callable[[], Any]] = {
# Whether to use DeepGemm for FP8 blockwise MoE.
"FD_USE_DEEP_GEMM":
lambda: bool(int(os.getenv("FD_USE_DEEP_GEMM", "1"))),
# Whether to use aggregate send.
"FD_USE_AGGREGATE_SEND":
lambda: bool(int(os.getenv("FD_USE_AGGREGATE_SEND", "0"))),
}

View File

@@ -20,6 +20,7 @@ import threading
import time
import zmq
import msgpack
from fastdeploy import envs
from fastdeploy.utils import llm_logger
@@ -37,6 +38,7 @@ class ZmqClient:
self.router_path = f"/dev/shm/router_{name}.ipc"
self.ZMQ_SNDHWM = int(envs.FD_ZMQ_SNDHWM)
self.aggregate_send = envs.FD_USE_AGGREGATE_SEND
self.mutex = threading.Lock()
self.req_dict = dict()
@@ -93,6 +95,16 @@ class ZmqClient:
"""
return self.socket.recv_pyobj()
def pack_aggregated_data(self, data):
"""
Aggregate multiple responses into one and send them to the client.
"""
result = data[0]
if len(data) > 1:
for response in data[1:]:
result.add(response)
result = msgpack.packb([result.to_dict()])
return result
def send_multipart(self, req_id, data):
"""
Send a multipart message to the router socket.
@@ -116,14 +128,22 @@ class ZmqClient:
break
try:
result = json.dumps(data.to_dict()).encode('utf-8')
start_send = time.time()
if self.aggregate_send:
result = self.pack_aggregated_data(data)
else:
result = msgpack.packb([response.to_dict() for response in data])
self.router.send_multipart([self.req_dict[req_id], b'', result])
llm_logger.debug(f"send_multipart result: {req_id} len {len(data)} elapse: {time.time()-start_send}")
except Exception as e:
llm_logger.error(f"Send result to zmq client failed: {e}")
if data.finished:
if data[-1].finished:
with self.mutex:
self.req_dict.pop(data.request_id, None)
self.req_dict.pop(req_id, None)
llm_logger.info(f"send_multipart finished, req_id: {req_id}")
def receive_json_once(self, block=False):
"""

View File

@@ -505,8 +505,6 @@ class TokenProcessor(object):
result.outputs.token_ids.append(token_id)
if token_id in task.eos_token_ids or is_prefill or recovery_stop:
result.finished = True
result.prompt = task.prompt
result.prompt_token_ids = task.prompt_token_ids
if recovery_stop:
result.error_msg = "Recover is not supported, the result is incomplete!"
llm_logger.info(

View File

@@ -29,9 +29,11 @@ triton==3.3
use-triton-in-paddle
crcmod
fastsafetensors==0.1.14
msgpack
opentelemetry-api>=1.24.0
opentelemetry-sdk>=1.24.0
opentelemetry-instrumentation-redis
opentelemetry-instrumentation-mysql
opentelemetry-distro 
opentelemetry-exporter-otlp

View File

@@ -27,3 +27,4 @@ moviepy
use-triton-in-paddle
crcmod
fastsafetensors==0.1.14
msgpack

View File

@@ -27,3 +27,4 @@ moviepy
use-triton-in-paddle
crcmod
fastsafetensors==0.1.14
msgpack