[LLM] support send batch data and aggregate data (#2860)

* [LLM] support send batch data and aggregate data

* [LLM] fix ci bugs

* [LLM] fix ci bugs

* [LLM] fix ci bugs

* [LLM] fix ci bugs

* [LLM] update
This commit is contained in:
ltd0924
2025-07-16 23:42:20 +08:00
committed by GitHub
parent 63d6e7ce06
commit d245d1ca6c
11 changed files with 267 additions and 208 deletions

View File

@@ -21,6 +21,7 @@ import traceback
import uuid
from typing import List, Optional
import msgpack
import aiozmq
from aiozmq import zmq
@@ -143,6 +144,8 @@ class OpenAIServingChat:
dealer.write([b"", request_id.encode('utf-8')])
choices = []
current_waiting_time = 0
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
while num_choices > 0:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
@@ -158,102 +161,106 @@ class OpenAIServingChat:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
await asyncio.sleep(0.01)
continue
response = msgpack.unpackb(raw_data[-1])
for res in response:
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
res = json.loads(raw_data[-1].decode('utf-8'))
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
self.engine_client.data_processor.process_response_dict(
res, stream=True, enable_thinking=enable_thinking)
self.engine_client.data_processor.process_response_dict(
res, stream=True, enable_thinking=enable_thinking)
if res['metrics']['first_token_time'] is not None:
arrival_time = res['metrics']['first_token_time']
inference_start_time = res['metrics']['inference_start_time']
else:
arrival_time = res['metrics']['arrival_time'] - inference_start_time
if first_iteration:
num_prompt_tokens = len(prompt_token_ids)
num_cached_tokens = res.get("num_cached_tokens", 0)
for i in range(num_choices):
choice = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role="assistant", content="", reasoning_content="", tool_calls=None)
)
if request.metadata is not None and request.metadata.get("training", False):
choice.delta.token_ids = prompt_token_ids
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice],
model=model_name
)
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens)
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
first_iteration = False
output = res["outputs"]
delta_text = output["text"]
raw_top_logprobs = output["top_logprobs"]
logprobs_res = None
if raw_top_logprobs is not None:
top_logprobs = LogprobsLists(
logprob_token_ids=raw_top_logprobs[0],
logprobs=raw_top_logprobs[1],
sampled_token_ranks=raw_top_logprobs[2],
)
logprobs_res = self.build_logprobs_response(
request_logprobs=request.logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request.top_logprobs,
)
previous_num_tokens += len(output["token_ids"])
delta_message = DeltaMessage(content=delta_text, reasoning_content=output.get("reasoning_content"), \
token_ids=output.get("token_ids"), tool_calls=output.get("tool_call_content", []))
choice = ChatCompletionResponseStreamChoice(
index=0,
delta=delta_message,
logprobs=logprobs_res,
arrival_time=arrival_time
)
if res["finished"]:
num_choices -= 1
work_process_metrics.e2e_request_latency.observe(time.time() - res["metrics"]["request_start_time"])
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
max_tokens = request.max_completion_tokens or request.max_tokens
if has_no_token_limit or previous_num_tokens != max_tokens:
choice.finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
choice.finish_reason = "tool_calls"
if res['metrics']['first_token_time'] is not None:
arrival_time = res['metrics']['first_token_time']
inference_start_time = res['metrics']['inference_start_time']
else:
choice.finish_reason = "length"
arrival_time = res['metrics']['arrival_time'] - inference_start_time
if first_iteration:
num_prompt_tokens = len(prompt_token_ids)
num_cached_tokens = res.get("num_cached_tokens", 0)
for i in range(num_choices):
choice = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role="assistant", content="", reasoning_content="", tool_calls=None)
)
if request.metadata is not None and request.metadata.get("training", False):
choice.delta.token_ids = prompt_token_ids
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice],
model=model_name
)
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens)
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
first_iteration = False
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
choice.finish_reason = "recover_stop"
output = res["outputs"]
delta_text = output["text"]
raw_top_logprobs = output["top_logprobs"]
logprobs_res = None
if raw_top_logprobs is not None:
top_logprobs = LogprobsLists(
logprob_token_ids=raw_top_logprobs[0],
logprobs=raw_top_logprobs[1],
sampled_token_ranks=raw_top_logprobs[2],
)
logprobs_res = self.build_logprobs_response(
request_logprobs=request.logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request.top_logprobs,
)
if request.metadata is not None and request.metadata.get("training", False) and delta_text != "":
choice.delta.token_ids = output["token_ids"]
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=previous_num_tokens,
total_tokens=num_prompt_tokens + previous_num_tokens
previous_num_tokens += len(output["token_ids"])
delta_message = DeltaMessage(content=delta_text, reasoning_content=output.get("reasoning_content"), \
token_ids=output.get("token_ids"), tool_calls=output.get("tool_call_content", []))
choice = ChatCompletionResponseStreamChoice(
index=0,
delta=delta_message,
logprobs=logprobs_res,
arrival_time=arrival_time
)
choices.append(choice)
if res["finished"]:
num_choices -= 1
work_process_metrics.e2e_request_latency.observe(time.time() - res["metrics"]["request_start_time"])
has_no_token_limit = request.max_tokens is None and request.max_completion_tokens is None
max_tokens = request.max_completion_tokens or request.max_tokens
if has_no_token_limit or previous_num_tokens != max_tokens:
choice.finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
choice.finish_reason = "tool_calls"
else:
choice.finish_reason = "length"
if len(choices) == max_streaming_response_tokens or res["finished"]:
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
choice.finish_reason = "recover_stop"
if request.metadata is not None and request.metadata.get("training", False) and delta_text != "":
choice.delta.token_ids = output["token_ids"]
if include_continuous_usage:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=previous_num_tokens,
total_tokens=num_prompt_tokens + previous_num_tokens
)
choices.append(choice)
if len(choices) == max_streaming_response_tokens or res["finished"]:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
choices = []
if choices:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
choices = []
@@ -321,33 +328,38 @@ class OpenAIServingChat:
await asyncio.sleep(0.1)
continue
data = json.loads(raw_data[-1].decode('utf-8'))
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
data = self.engine_client.data_processor.process_response_dict(
data, stream=False, enable_thinking=enable_thinking)
# api_server_logger.debug(f"Client {request_id} received: {data}")
previous_num_tokens += len(data["outputs"]["token_ids"])
# The logprob for handling the response
output = data["outputs"]
raw_top_logprobs = output["top_logprobs"]
if raw_top_logprobs is not None:
top_logprobs = LogprobsLists(
logprob_token_ids=raw_top_logprobs[0],
logprobs=raw_top_logprobs[1],
sampled_token_ranks=raw_top_logprobs[2],
)
logprobs_res = self.build_logprobs_response(
request_logprobs=request.logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request.top_logprobs,
)
if logprobs_res and logprobs_res.content is not None:
logprob_contents.extend(logprobs_res.content)
if data["finished"]:
final_res = data
response = msgpack.unpackb(raw_data[-1])
task_is_finished = False
for data in response:
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
data = self.engine_client.data_processor.process_response_dict(
data, stream=False, enable_thinking=enable_thinking)
# api_server_logger.debug(f"Client {request_id} received: {data}")
previous_num_tokens += len(data["outputs"]["token_ids"])
# The logprob for handling the response
output = data["outputs"]
raw_top_logprobs = output["top_logprobs"]
if raw_top_logprobs is not None:
top_logprobs = LogprobsLists(
logprob_token_ids=raw_top_logprobs[0],
logprobs=raw_top_logprobs[1],
sampled_token_ranks=raw_top_logprobs[2],
)
logprobs_res = self.build_logprobs_response(
request_logprobs=request.logprobs,
response_logprobs=top_logprobs,
request_top_logprobs=request.top_logprobs,
)
if logprobs_res and logprobs_res.content is not None:
logprob_contents.extend(logprobs_res.content)
if data["finished"]:
final_res = data
task_is_finished = True
break
if task_is_finished:
break
finally:
dealer.close()