[GCU] Enable gcu CI (#3190)
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled

* [GCU] Update to the latest version

* [GCU] Enable CI
This commit is contained in:
EnflameGCU
2025-08-13 11:48:24 +08:00
committed by GitHub
parent ce9180241e
commit d1a92e3e17
6 changed files with 87 additions and 45 deletions

View File

@@ -29,7 +29,9 @@ jobs:
REPO_NAME="${FULL_REPO##*/}" REPO_NAME="${FULL_REPO##*/}"
BASE_BRANCH="${{ github.base_ref }}" BASE_BRANCH="${{ github.base_ref }}"
# Clean the repository directory before starting # Clean the repository directory before starting
docker run --rm --net=host -v $(pwd):/workspace -w /workspace \ docker run --rm --net=host -v $(pwd):/workspace \
-v ${{ github.workspace }}/../../..:${{ github.workspace }}/../../.. \
-w /workspace \
-e "REPO_NAME=${REPO_NAME}" \ -e "REPO_NAME=${REPO_NAME}" \
-e "BASE_BRANCH=${BASE_BRANCH}" \ -e "BASE_BRANCH=${BASE_BRANCH}" \
${docker_image} /bin/bash -c ' ${docker_image} /bin/bash -c '
@@ -40,6 +42,7 @@ jobs:
' '
git config --global user.name "FastDeployCI" git config --global user.name "FastDeployCI"
git config --global user.email "fastdeploy_ci@example.com" git config --global user.email "fastdeploy_ci@example.com"
source ${{ github.workspace }}/../../../proxy
git clone ${REPO} ${REPO_NAME} -b ${BASE_BRANCH} git clone ${REPO} ${REPO_NAME} -b ${BASE_BRANCH}
cd FastDeploy cd FastDeploy
if [ "${{ github.event_name }}" = "pull_request" ]; then if [ "${{ github.event_name }}" = "pull_request" ]; then
@@ -50,6 +53,9 @@ jobs:
git checkout ${{ github.sha }} git checkout ${{ github.sha }}
git log -n 3 --oneline git log -n 3 --oneline
fi fi
echo "Copy models..."
sudo mkdir -p ci_models && sudo cp -r /work/deps/ERNIE-4.5-21B-A3B-Paddle ci_models
echo "Copy models done."
- name: Run CI unittest - name: Run CI unittest
env: env:
@@ -71,13 +77,15 @@ jobs:
echo "PARENT_DIR:$PARENT_DIR" echo "PARENT_DIR:$PARENT_DIR"
echo "Install drivers..." echo "Install drivers..."
cd /work/deps cd /work/deps
bash TopsRider_i3x_*_deb_amd64.run --driver --no-auto-load -y sudo bash TopsRider_i3x_*_deb_amd64.run --driver --no-auto-load -y
cd - cd -
docker run --rm --network=host --ipc=host -it --privileged \ echo "Create docker..."
-v $(pwd):/workspace -w /workspace \ docker run --rm --network=host --ipc=host --privileged \
-v "/home:/home" \ -v $(pwd):/workspace \
-v "/work:/work" \ -v /home:/home \
-e "MODEL_PATH=/work/models" \ -v /work:/work \
-w /workspace \
-e "MODEL_PATH=./ci_models" \
-e "http_proxy=$(git config --global --get http.proxy)" \ -e "http_proxy=$(git config --global --get http.proxy)" \
-e "https_proxy=$(git config --global --get https.proxy)" \ -e "https_proxy=$(git config --global --get https.proxy)" \
-e "FD_API_PORT=${FD_API_PORT}" \ -e "FD_API_PORT=${FD_API_PORT}" \

View File

@@ -76,6 +76,8 @@ class GCUFlashAttnBackend(AttentionBackend):
kv_num_heads: int, kv_num_heads: int,
num_heads: int, num_heads: int,
head_dim: int, head_dim: int,
encoder_block_shape_q: int = -1,
decoder_block_shape_q: int = -1,
): ):
""" """
GCUFlashAttnBackend __init__ GCUFlashAttnBackend __init__
@@ -94,7 +96,7 @@ class GCUFlashAttnBackend(AttentionBackend):
self.head_dim = head_dim self.head_dim = head_dim
self.scaling = 1.0 / (self.head_dim**0.5) self.scaling = 1.0 / (self.head_dim**0.5)
self.num_layers = fd_config.model_config.num_hidden_layers self.num_layers = fd_config.model_config.num_hidden_layers
self.position_ids_base = paddle.arange(self.max_seq_len) self.position_ids_base = np.arange(self.max_seq_len)
# TODO(zhengjun): Need to adapt the allocation logic and # TODO(zhengjun): Need to adapt the allocation logic and
# temporarily allocate according to fixed size # temporarily allocate according to fixed size

View File

@@ -74,6 +74,8 @@ class GCUMemEfficientAttnBackend(AttentionBackend):
kv_num_heads: int, kv_num_heads: int,
num_heads: int, num_heads: int,
head_dim: int, head_dim: int,
encoder_block_shape_q: int = -1,
decoder_block_shape_q: int = -1,
): ):
""" """
GCUMemEfficientAttnBackend __init__ GCUMemEfficientAttnBackend __init__
@@ -92,7 +94,7 @@ class GCUMemEfficientAttnBackend(AttentionBackend):
self.head_dim = head_dim self.head_dim = head_dim
self.scaling = 1.0 / (self.head_dim**0.5) self.scaling = 1.0 / (self.head_dim**0.5)
self.num_layers = fd_config.model_config.num_hidden_layers self.num_layers = fd_config.model_config.num_hidden_layers
self.position_ids_base = paddle.arange(self.max_seq_len) self.position_ids_base = np.arange(self.max_seq_len)
# TODO(zhengjun): Need to adapt the allocation logic and # TODO(zhengjun): Need to adapt the allocation logic and
# temporarily allocate according to fixed size # temporarily allocate according to fixed size

View File

@@ -295,7 +295,7 @@ class GCUModelRunner(ModelRunnerBase):
if self.speculative_method in ["mtp"]: if self.speculative_method in ["mtp"]:
self.proposer.insert_prefill_inputs(req_dicts) self.proposer.insert_prefill_inputs(req_dicts)
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests] self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int, expected_decode_len: int): def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int, expected_decode_len: int):
"""Set dummy prefill inputs to share_inputs""" """Set dummy prefill inputs to share_inputs"""
@@ -675,7 +675,7 @@ class GCUModelRunner(ModelRunnerBase):
) )
self.share_inputs["decoder_batch_ids"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32") self.share_inputs["decoder_batch_ids"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32")
self.share_inputs["decoder_tile_ids_per_batch"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32") self.share_inputs["decoder_tile_ids_per_batch"] = paddle.full([int(decode_max_tile_size)], 0, dtype="int32")
self.share_inputs["decoder_num_blocks_cpu"] = paddle.full([1], 0, dtype="int32").pin_memory() self.share_inputs["decoder_num_blocks_cpu"] = paddle.full([1], 0, dtype="int32").cpu()
self.share_inputs["max_len_tensor_cpu"] = paddle.full([8], 0, dtype="int32").cpu() self.share_inputs["max_len_tensor_cpu"] = paddle.full([8], 0, dtype="int32").cpu()
# Get the attention backend # Get the attention backend
@@ -1062,9 +1062,7 @@ class GCUModelRunner(ModelRunnerBase):
self._update_chunked_prefill(model_forward_batch) self._update_chunked_prefill(model_forward_batch)
self._add_cache(model_forward_batch) self._add_cache(model_forward_batch)
self.seq_lens_this_time_buffer[:num_running_requests].copy_( self.seq_lens_this_time_buffer.copy_(self.share_inputs["seq_lens_this_time"], False)
self.share_inputs["seq_lens_this_time"][:num_running_requests], False
)
return None return None
def _add_cache(self, model_forward_batch) -> None: def _add_cache(self, model_forward_batch) -> None:

View File

@@ -1,13 +1,18 @@
#!/bin/bash #!/usr/bin/env bash
DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)" DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
echo "$DIR" echo "Current directory: ${DIR}"
#先kill一遍 function stop_processes() {
ps -efww | grep -E 'api_server' | grep -v grep | awk '{print $2}' | xargs kill -9 || true ps -efww | grep -E 'api_server' | grep -v grep | awk '{print $2}' | xargs kill -9 || true
ps -efww | grep -E '8188' | grep -v grep | awk '{print $2}' | xargs kill -9 || true ps -efww | grep -E '8188' | grep -v grep | awk '{print $2}' | xargs kill -9 || true
lsof -t -i :8188 | xargs kill -9 || true lsof -t -i :8188 | xargs kill -9 || true
}
export model_path=${MODEL_PATH}/paddle/ERNIE-4.5-21B-A3B-Paddle echo "Clean up processes..."
stop_processes
echo "Clean up completed."
export model_path=${MODEL_PATH}/ERNIE-4.5-21B-A3B-Paddle
echo "pip install requirements" echo "pip install requirements"
python -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple python -m pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
@@ -15,6 +20,7 @@ echo "uninstall org"
python -m pip uninstall paddlepaddle -y python -m pip uninstall paddlepaddle -y
python -m pip uninstall paddle-custom-gcu -y python -m pip uninstall paddle-custom-gcu -y
python -m pip install paddlepaddle==3.1.0a0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/ python -m pip install paddlepaddle==3.1.0a0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
python -m pip install --pre paddle-custom-gcu==3.0.0.dev20250801 -i https://www.paddlepaddle.org.cn/packages/nightly/gcu/
echo "build whl" echo "build whl"
bash build.sh 1 || exit 1 bash build.sh 1 || exit 1
@@ -22,12 +28,12 @@ unset http_proxy
unset https_proxy unset https_proxy
unset no_proxy unset no_proxy
# 起服务
rm -rf log/* rm -rf log/*
rm -f core* rm -f core*
# pkill -9 python #流水线不执行这个
#清空消息队列 # Empty the message queue
ipcrm --all=msg ipcrm --all=msg
echo "Start server..."
python -m fastdeploy.entrypoints.openai.api_server \ python -m fastdeploy.entrypoints.openai.api_server \
--model ${model_path} \ --model ${model_path} \
--port 8188 \ --port 8188 \
@@ -38,21 +44,40 @@ python -m fastdeploy.entrypoints.openai.api_server \
--max-num-seqs 8 \ --max-num-seqs 8 \
--quantization wint4 > server.log 2>&1 & --quantization wint4 > server.log 2>&1 &
sleep 60 echo "Waiting 90 seconds..."
# 探活 sleep 90
TIMEOUT=$((5 * 60))
INTERVAL=10 # 检查间隔(秒) if grep -q "Failed to launch worker processes" server.log; then
echo "Failed to launch worker processes..."
stop_processes
cat server.log
cat log/workerlog.0
exit 1
fi
if grep -q "Traceback (most recent call last):" server.log; then
echo "Some errors occurred..."
stop_processes
cat server.log
cat log/workerlog.0
exit 1
fi
# Health check
TIMEOUT=$((11 * 60))
INTERVAL=30 # Check interval (seconds)
ENDPOINT="http://0.0.0.0:8188/health" ENDPOINT="http://0.0.0.0:8188/health"
START_TIME=$(date +%s) # 记录开始时间戳 START_TIME=$(date +%s) # Record the start timestamp
echo "开始服务健康检查,最长等待时间:${TIMEOUT}" echo "Start the server health check, maximum waiting time: ${TIMEOUT} seconds..."
while true; do while true; do
# 计算已耗时 # Used to calculate the time cost
CURRENT_TIME=$(date +%s) CURRENT_TIME=$(date +%s)
ELAPSED=$((CURRENT_TIME - START_TIME)) ELAPSED=$((CURRENT_TIME - START_TIME))
# 超时判断 # Timeout
if [ $ELAPSED -ge $TIMEOUT ]; then if [ $ELAPSED -ge $TIMEOUT ]; then
echo -e "\n服务启动超时:经过 $((TIMEOUT/60)) 分钟服务仍未启动!" echo -e "\nServer start timeout: After $((TIMEOUT/60)) minutes, the service still doesn't start!"
stop_processes
cat server.log cat server.log
cat log/workerlog.0 cat log/workerlog.0
exit 1 exit 1
@@ -61,7 +86,7 @@ while true; do
HTTP_CODE=$(curl -s -o /dev/null -w "%{http_code}" -m 2 "$ENDPOINT" || true) HTTP_CODE=$(curl -s -o /dev/null -w "%{http_code}" -m 2 "$ENDPOINT" || true)
if [ "$HTTP_CODE" = "200" ]; then if [ "$HTTP_CODE" = "200" ]; then
echo -e "\n服务启动成功!耗时 ${ELAPSED}" echo -e "\nThe server was successfully launched! Totally takes $((ELAPSED+90)) seconds."
break break
else else
sleep $INTERVAL sleep $INTERVAL
@@ -69,18 +94,19 @@ while true; do
done done
cat server.log cat server.log
echo -e "\n"
# 执行服务化推理 echo "Start inference..."
python test/ci_use/GCU/run_ernie.py python test/ci_use/GCU/run_ernie.py
exit_code=$? exit_code=$?
echo exit_code is ${exit_code} echo -e "exit_code is ${exit_code}.\n"
ps -efww | grep -E 'api_server' | grep -v grep | awk '{print $2}' | xargs kill -9 || true echo "Stop server..."
ps -efww | grep -E '8188' | grep -v grep | awk '{print $2}' | xargs kill -9 || true stop_processes
lsof -t -i :8188 | xargs kill -9 || true echo "Stop server done."
if [ ${exit_code} -ne 0 ]; then if [ ${exit_code} -ne 0 ]; then
echo "log/workerlog.0" echo "Exit with error, please refer to log/workerlog.0"
cat log/workerlog.0 cat log/workerlog.0
exit 1 exit 1
fi fi

View File

@@ -15,10 +15,9 @@
import openai import openai
ip = "0.0.0.0" ip = "0.0.0.0"
service_http_port = "8188" # 服务配置的 service_http_port = "8188"
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY") client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")
# 非流式对话
response = client.chat.completions.create( response = client.chat.completions.create(
model="default", model="default",
messages=[ messages=[
@@ -26,7 +25,14 @@ response = client.chat.completions.create(
], ],
temperature=1, temperature=1,
top_p=0, top_p=0,
max_tokens=64, max_tokens=256,
stream=False, stream=False,
) )
print(response) print(f"response is: {response}", flush=True)
generate_context = response.choices[0].message.content
print(f"\ngenerate_context is: {generate_context}", flush=True)
assert "pacific ocean" in generate_context.lower(), "The answer was incorrect!"
print("Test successfully!", flush=True)