[Feature] support ep in mixed mode (#3001)

* [LLM] support ep

* Update worker_process.py

* Update expert_service.py

* Update worker_process.py

* format files
This commit is contained in:
ltd0924
2025-07-30 20:43:39 +08:00
committed by GitHub
parent bd29b2aaca
commit d17886de19
4 changed files with 58 additions and 52 deletions

View File

@@ -225,6 +225,9 @@ class Config:
else: else:
self.is_master = False self.is_master = False
if self.tensor_parallel_size <= self.worker_num_per_node:
self.is_master = True
import paddle import paddle
self.paddle_commit_id = paddle.version.commit self.paddle_commit_id = paddle.version.commit

View File

@@ -243,38 +243,38 @@ class LLMEngine:
self.splitwise_receive_thread.daemon = True self.splitwise_receive_thread.daemon = True
self.splitwise_receive_thread.start() self.splitwise_receive_thread.start()
self.cfg.init_cache_info() self.cfg.init_cache_info()
role = self.cfg.splitwise_role role = self.cfg.splitwise_role
host_ip = self.cfg.host_ip host_ip = self.cfg.host_ip
disaggregate = self.cfg.disaggregate_info disaggregate = self.cfg.disaggregate_info
if self.cfg.scheduler_config.name == "splitwise": if self.cfg.scheduler_config.name == "splitwise":
self.scheduler.start(role, host_ip, disaggregate) self.scheduler.start(role, host_ip, disaggregate)
time.sleep(1) time.sleep(1)
if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1: if self.cfg.parallel_config.enable_expert_parallel and self.cfg.parallel_config.data_parallel_size > 1:
self.dp_processed = [] self.dp_processed = []
for i in range( for i in range(
1, 1,
self.cfg.parallel_config.data_parallel_size // self.cfg.nnode, self.cfg.parallel_config.data_parallel_size // self.cfg.nnode,
): ):
time.sleep(1) time.sleep(1)
self.dp_processed.append( self.dp_processed.append(
multiprocessing.Process( multiprocessing.Process(
target=start_expert_service, target=start_expert_service,
args=( args=(
self.cfg, self.cfg,
i + self.cfg.node_rank * self.cfg.worker_num_per_node, i + self.cfg.node_rank * self.cfg.worker_num_per_node,
self.ipc_signal_suffix, self.ipc_signal_suffix,
), ),
)
) )
llm_logger.info( )
f"Engine is initialized successfully with {self.cfg.tensor_parallel_size}" llm_logger.info(
+ f" data parallel id {i}" f"Engine is initialized successfully with {self.cfg.tensor_parallel_size}"
) + f" data parallel id {i}"
self.dp_processed[-1].start() )
self.dp_processed[-1].start()
console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.") console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.")
return True return True

View File

@@ -50,9 +50,10 @@ class ExpertService:
cfg (Config): Config object containing all the configuration parameters. cfg (Config): Config object containing all the configuration parameters.
""" """
self.cfg = cfg self.cfg = cfg
start_pos = (local_data_parallel_id * self.cfg.tensor_parallel_size) % self.cfg.worker_num_per_node start_pos = (local_data_parallel_id * self.cfg.tensor_parallel_size) % cfg.worker_num_per_node
end_pos = ((local_data_parallel_id + 1) * self.cfg.tensor_parallel_size) % self.cfg.worker_num_per_node end_pos = start_pos + self.cfg.tensor_parallel_size
self.cfg.cache_config.rdma_comm_ports = self.cfg.cache_config.rdma_comm_ports[start_pos:end_pos] if cfg.splitwise_role != "mixed":
self.cfg.cache_config.rdma_comm_ports = self.cfg.cache_config.rdma_comm_ports[start_pos:end_pos]
self.cfg.local_device_ids = self.cfg.device_ids.split(",")[start_pos:end_pos] self.cfg.local_device_ids = self.cfg.device_ids.split(",")[start_pos:end_pos]
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
self.cfg.disaggregate_info = None self.cfg.disaggregate_info = None
@@ -78,11 +79,13 @@ class ExpertService:
cfg.splitwise_role, cfg.splitwise_role,
local_data_parallel_id, local_data_parallel_id,
) )
if cfg.splitwise_role != "mixed":
if len(self.cfg.cache_config.pd_comm_port) == 1: if len(self.cfg.cache_config.pd_comm_port) == 1:
self.cfg.cache_config.pd_comm_port[0] = int(self.cfg.cache_config.pd_comm_port[0]) + local_data_parallel_id self.cfg.cache_config.pd_comm_port[0] = (
else: int(self.cfg.cache_config.pd_comm_port[0]) + local_data_parallel_id
self.cfg.cache_config.pd_comm_port = [self.cfg.cache_config.pd_comm_port[local_data_parallel_id]] )
else:
self.cfg.cache_config.pd_comm_port = [self.cfg.cache_config.pd_comm_port[local_data_parallel_id]]
self.split_connector = SplitwiseConnector( self.split_connector = SplitwiseConnector(
self.cfg, self.cfg,
@@ -119,15 +122,16 @@ class ExpertService:
start_time = time.time() start_time = time.time()
llm_logger.info(f"start expert service {local_data_parallel_id}") llm_logger.info(f"start expert service {local_data_parallel_id}")
if self.cfg.splitwise_role != "mixed":
self.cache_manager_processes = self.resource_manager.cache_manager.launch_cache_manager( self.cache_manager_processes = self.resource_manager.cache_manager.launch_cache_manager(
cache_config=self.cfg.cache_config, cache_config=self.cfg.cache_config,
tensor_parallel_size=self.cfg.tensor_parallel_size, tensor_parallel_size=self.cfg.tensor_parallel_size,
device_ids=self.cfg.local_device_ids, device_ids=self.cfg.local_device_ids,
pod_ip=self.cfg.master_ip, pod_ip=self.cfg.pod_ips[0],
engine_worker_queue_port=self.cfg.engine_worker_queue_port, engine_worker_queue_port=self.cfg.engine_worker_queue_port,
pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}", pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}",
) )
self.split_mode_get_tasks()
self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, args=()) self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, args=())
self.insert_task_to_worker_thread.daemon = True self.insert_task_to_worker_thread.daemon = True
@@ -138,8 +142,6 @@ class ExpertService:
self.token_processor.run() self.token_processor.run()
self.split_mode_get_tasks()
self.cfg.init_cache_info() self.cfg.init_cache_info()
role = self.cfg.splitwise_role role = self.cfg.splitwise_role
@@ -321,13 +323,13 @@ class ExpertService:
else: else:
is_prefill = True is_prefill = True
self.token_processor.number_of_input_tokens += tasks[i].prompt_token_ids_len self.token_processor.number_of_input_tokens += tasks[i].prompt_token_ids_len
if is_decode or is_prefill:
self.split_connector.send_cache_infos(tasks, current_id) self.split_connector.send_cache_infos(tasks, current_id)
for task in tasks: for task in tasks:
task.infer_start_time = time.time() task.infer_start_time = time.time()
if not is_decode: if not is_decode:
llm_logger.info(f"Tasks are sent to engine, req_ids={req_ids}") llm_logger.info(f"Tasks are sent to engine, req_ids={req_ids}")
if not is_prefill: if not is_prefill and self.cfg.cache_config.enable_chunked_prefill:
if not self.cfg.enable_mm: if not self.cfg.enable_mm:
self.update_requests_chunk_size(tasks) self.update_requests_chunk_size(tasks)
else: else:

View File

@@ -283,14 +283,15 @@ class PaddleDisWorkerProc:
paddle.distributed.barrier() paddle.distributed.barrier()
self.insert_step = False self.insert_step = False
self.worker_healthy_live_signal.value[self.local_rank] = int(time.time()) self.worker_healthy_live_signal.value[self.local_rank % self.max_chips_per_node] = int(time.time())
# The first worker detects whether there are tasks in the task queue # The first worker detects whether there are tasks in the task queue
if self.local_rank % mp_num_per_node == 0: if self.local_rank % mp_num_per_node == 0:
if self.task_queue.num_tasks() > 0: if self.task_queue.num_tasks() > 0:
# VL only support 1 batch to prefill # VL only support 1 batch to prefill
if not self.fd_config.model_config.enable_mm or not self.worker.exist_prefill(): if not self.fd_config.model_config.enable_mm or not self.worker.exist_prefill():
if self.nnode > 1: if self.nnode > 1 and self.parallel_config.tensor_parallel_size > self.max_chips_per_node:
self.task_queue.read_finish_flag.set(1) self.task_queue.read_finish_flag.set(1)
else: else:
self.exist_task_signal.value[self.fd_config.parallel_config.expert_parallel_rank] = 1 self.exist_task_signal.value[self.fd_config.parallel_config.expert_parallel_rank] = 1