mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
[Example] Move SOLOv2 jetson example -> cpp (#1600)
* move solov2 * move solov2 --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
@@ -71,3 +71,6 @@ target_link_libraries(infer_tood_demo ${FASTDEPLOY_LIBS})
|
|||||||
|
|
||||||
add_executable(infer_gfl_demo ${PROJECT_SOURCE_DIR}/infer_gfl.cc)
|
add_executable(infer_gfl_demo ${PROJECT_SOURCE_DIR}/infer_gfl.cc)
|
||||||
target_link_libraries(infer_gfl_demo ${FASTDEPLOY_LIBS})
|
target_link_libraries(infer_gfl_demo ${FASTDEPLOY_LIBS})
|
||||||
|
|
||||||
|
add_executable(infer_solov2_demo ${PROJECT_SOURCE_DIR}/infer_solov2.cc)
|
||||||
|
target_link_libraries(infer_solov2_demo ${FASTDEPLOY_LIBS})
|
||||||
|
@@ -1,21 +0,0 @@
|
|||||||
English | [简体中文](README_CN.md)
|
|
||||||
|
|
||||||
# PaddleDetection Model Deployment
|
|
||||||
|
|
||||||
FastDeploy supports the SOLOV2 model of [PaddleDetection version 2.6](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6).
|
|
||||||
|
|
||||||
You can enter the following command to get the static diagram model of SOLOV2.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# install PaddleDetection
|
|
||||||
git clone https://github.com/PaddlePaddle/PaddleDetection.git
|
|
||||||
cd PaddleDetection
|
|
||||||
|
|
||||||
python tools/export_model.py -c configs/solov2/solov2_r50_fpn_1x_coco.yml --output_dir=./inference_model \
|
|
||||||
-o weights=https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_1x_coco.pdparams
|
|
||||||
```
|
|
||||||
|
|
||||||
## Detailed Deployment Documents
|
|
||||||
|
|
||||||
- [Python Deployment](python)
|
|
||||||
- [C++ Deployment](cpp)
|
|
@@ -1,20 +0,0 @@
|
|||||||
[English](README.md) | 简体中文
|
|
||||||
# PaddleDetection模型部署
|
|
||||||
|
|
||||||
FastDeploy支持[PaddleDetection 2.6](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6)版本的SOLOv2模型,
|
|
||||||
|
|
||||||
你可以输入以下命令得到SOLOv2的静态图模型。
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# install PaddleDetection
|
|
||||||
git clone https://github.com/PaddlePaddle/PaddleDetection.git
|
|
||||||
cd PaddleDetection
|
|
||||||
|
|
||||||
python tools/export_model.py -c configs/solov2/solov2_r50_fpn_1x_coco.yml --output_dir=./inference_model \
|
|
||||||
-o weights=https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_1x_coco.pdparams
|
|
||||||
```
|
|
||||||
|
|
||||||
## 详细部署文档
|
|
||||||
|
|
||||||
- [Python部署](python)
|
|
||||||
- [C++部署](cpp)
|
|
@@ -1,11 +0,0 @@
|
|||||||
PROJECT(infer_demo C CXX)
|
|
||||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
|
||||||
|
|
||||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
|
||||||
|
|
||||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
|
||||||
|
|
||||||
include_directories(${FASTDEPLOY_INCS})
|
|
||||||
|
|
||||||
add_executable(infer_solov2_demo ${PROJECT_SOURCE_DIR}/infer_solov2.cc)
|
|
||||||
target_link_libraries(infer_solov2_demo ${FASTDEPLOY_LIBS})
|
|
@@ -1,28 +0,0 @@
|
|||||||
English | [简体中文](README_CN.md)
|
|
||||||
# PaddleDetection C++ Deployment Example
|
|
||||||
|
|
||||||
This directory provides examples that `infer_xxx.cc` fast finishes the deployment of PaddleDetection models, including SOLOv2 on CPU/GPU and GPU accelerated by TensorRT.
|
|
||||||
|
|
||||||
Before deployment, two steps require confirmation
|
|
||||||
|
|
||||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
||||||
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
||||||
|
|
||||||
Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
mkdir build
|
|
||||||
cd build
|
|
||||||
|
|
||||||
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
|
|
||||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
|
||||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
|
||||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
|
||||||
make -j
|
|
||||||
|
|
||||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
|
||||||
# CPU inference
|
|
||||||
./infer_solov2_demo ./solov2_r50_fpn_1x_coco 000000014439.jpg 0
|
|
||||||
# GPU inference
|
|
||||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
|
|
||||||
```
|
|
@@ -1,29 +0,0 @@
|
|||||||
[English](README.md) | 简体中文
|
|
||||||
# PaddleDetection C++部署示例
|
|
||||||
|
|
||||||
本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括SOLOv2在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
|
||||||
|
|
||||||
在部署前,需确认以下两个步骤
|
|
||||||
|
|
||||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
|
||||||
- 2. 根据开发环境,下载预编译部署库和examples代码,参考[FastDeploy预编译库](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
|
||||||
|
|
||||||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
|
||||||
|
|
||||||
|
|
||||||
```bash
|
|
||||||
mkdir build
|
|
||||||
cd build
|
|
||||||
|
|
||||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
|
||||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
|
||||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
|
||||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
|
||||||
make -j
|
|
||||||
|
|
||||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
|
||||||
# CPU推理
|
|
||||||
./infer_solov2_demo ./solov2_r50_fpn_1x_coco 000000014439.jpg 0
|
|
||||||
# GPU推理
|
|
||||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
|
|
||||||
```
|
|
@@ -1,96 +0,0 @@
|
|||||||
English | [简体中文](README_CN.md)
|
|
||||||
# PaddleDetection Python Deployment Example
|
|
||||||
|
|
||||||
Before deployment, two steps require confirmation.
|
|
||||||
|
|
||||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
|
||||||
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
|
||||||
|
|
||||||
This directory provides examples that `infer_xxx.py` fast finishes the deployment of PPYOLOE/PicoDet models on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# Download deployment example code
|
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
||||||
cd FastDeploy/examples/vision/detection/paddledetection/python/
|
|
||||||
|
|
||||||
# Download the PPYOLOE model file and test images
|
|
||||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
|
||||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
|
||||||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
|
||||||
|
|
||||||
# CPU inference
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device cpu
|
|
||||||
# GPU inference
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu
|
|
||||||
# TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True
|
|
||||||
# Kunlunxin XPU Inference
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device kunlunxin
|
|
||||||
# Huawei Ascend Inference
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device ascend
|
|
||||||
```
|
|
||||||
|
|
||||||
The visualized result after running is as follows
|
|
||||||
<div align="center">
|
|
||||||
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
|
|
||||||
</div>
|
|
||||||
|
|
||||||
## PaddleDetection Python Interface
|
|
||||||
|
|
||||||
```python
|
|
||||||
fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.CascadeRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PSSDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.RetinaNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PPYOLOESOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.FCOS(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.TTFNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.TOOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.GFL(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.SOLOv2(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
```
|
|
||||||
|
|
||||||
PaddleDetection model loading and initialization, among which model_file and params_file are the exported Paddle model format. config_file is the configuration yaml file exported by PaddleDetection simultaneously
|
|
||||||
|
|
||||||
**Parameter**
|
|
||||||
|
|
||||||
> * **model_file**(str): Model file path
|
|
||||||
> * **params_file**(str): Parameter file path
|
|
||||||
> * **config_file**(str): Inference configuration yaml file path
|
|
||||||
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default. (use the default configuration)
|
|
||||||
> * **model_format**(ModelFormat): Model format. Paddle format by default
|
|
||||||
|
|
||||||
### predict Function
|
|
||||||
|
|
||||||
PaddleDetection models, including PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN, all provide the following member functions for image detection
|
|
||||||
> ```python
|
|
||||||
> PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
|
||||||
> ```
|
|
||||||
>
|
|
||||||
> Model prediction interface. Input images and output results directly.
|
|
||||||
>
|
|
||||||
> **Parameter**
|
|
||||||
>
|
|
||||||
> > * **image_data**(np.ndarray): Input data in HWC or BGR format
|
|
||||||
|
|
||||||
> **Return**
|
|
||||||
>
|
|
||||||
> > Return `fastdeploy.vision.DetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure.
|
|
||||||
|
|
||||||
## Other Documents
|
|
||||||
|
|
||||||
- [PaddleDetection Model Description](..)
|
|
||||||
- [PaddleDetection C++ Deployment](../cpp)
|
|
||||||
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
|
||||||
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)
|
|
@@ -1,96 +0,0 @@
|
|||||||
[English](README.md) | 简体中文
|
|
||||||
# PaddleDetection Python部署示例
|
|
||||||
|
|
||||||
在部署前,需确认以下两个步骤
|
|
||||||
|
|
||||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
|
||||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
|
||||||
|
|
||||||
本目录下提供`infer_xxx.py`快速完成PPYOLOE/PicoDet等模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
|
||||||
|
|
||||||
```bash
|
|
||||||
#下载部署示例代码
|
|
||||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
||||||
cd FastDeploy/examples/vision/detection/paddledetection/python/
|
|
||||||
|
|
||||||
#下载PPYOLOE模型文件和测试图片
|
|
||||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
|
||||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
|
||||||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
|
||||||
|
|
||||||
# CPU推理
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device cpu
|
|
||||||
# GPU推理
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu
|
|
||||||
# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待)
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True
|
|
||||||
# 昆仑芯XPU推理
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device kunlunxin
|
|
||||||
# 华为昇腾推理
|
|
||||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device ascend
|
|
||||||
```
|
|
||||||
|
|
||||||
运行完成可视化结果如下图所示
|
|
||||||
<div align="center">
|
|
||||||
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
|
|
||||||
</div>
|
|
||||||
|
|
||||||
## PaddleDetection Python接口
|
|
||||||
|
|
||||||
```python
|
|
||||||
fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.CascadeRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PSSDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.RetinaNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.PPYOLOESOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.FCOS(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.TTFNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.TOOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.GFL(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
fastdeploy.vision.detection.SOLOv2(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
||||||
```
|
|
||||||
|
|
||||||
PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件
|
|
||||||
|
|
||||||
**参数**
|
|
||||||
|
|
||||||
> * **model_file**(str): 模型文件路径
|
|
||||||
> * **params_file**(str): 参数文件路径
|
|
||||||
> * **config_file**(str): 推理配置yaml文件路径
|
|
||||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
|
||||||
> * **model_format**(ModelFormat): 模型格式,默认为Paddle
|
|
||||||
|
|
||||||
### predict函数
|
|
||||||
|
|
||||||
PaddleDetection中各个模型,包括PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN,均提供如下同样的成员函数用于进行图像的检测
|
|
||||||
> ```python
|
|
||||||
> PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
|
||||||
> ```
|
|
||||||
>
|
|
||||||
> 模型预测结口,输入图像直接输出检测结果。
|
|
||||||
>
|
|
||||||
> **参数**
|
|
||||||
>
|
|
||||||
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
|
||||||
|
|
||||||
> **返回**
|
|
||||||
>
|
|
||||||
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
|
||||||
|
|
||||||
## 其它文档
|
|
||||||
|
|
||||||
- [PaddleDetection 模型介绍](..)
|
|
||||||
- [PaddleDetection C++部署](../cpp)
|
|
||||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
|
||||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
|
Reference in New Issue
Block a user